uclib- 17299

Lawrence Livermore Laboratory

THE PRELIMINARY DESIGN OF AN ADVANCED PROGRAMMABLE DIGITAL
FILTER NETWORK FOR LARGE PASSIVE ACOUSTIC ASW SYSTEMS

Thomas McWilliams, Lawrence C, Widdoes, Jr,, Lowell Wood

' : MBPOIT AYIORN £y
30 September 1976 Gl R C &5 Z:"M]’ (e Py
SUBJETT vo weopy

N WY gt ke
Prepared for The Naval Systems Division, Office of Naval Researj'ch‘"" -
Arlington, Virginia

Under ONR Order No. N00014-76-F-0023

This is an informal report intended
primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

Lkw
e == !
il !&:“J:E
lllllll l Em

f ,nqm

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.

! LI e By BV e

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161

LAWRENCE LIVERMORE LABORATORY

§576-151
THE PRELIMINARY DESIGN
OF
AN ADVANCED PROGRAMMABLE DIGITAL FILTER NETWORK
FOR

LARGE PASSIVE ACOUSTIC ASW SYSTEMS

An Interim Report on Research Work in

Advanced Programmable Digital Filter Network Techndlogy

Reported by: Thomas McWilliams .
' Lawrence C. Widdoes, Jr.
Lowell Wood

Special Studies Group
Physics Department

30 September 1976

Prepared for: The Naval Systems Division
Office of Naval Research
Arlington, Virginia

Under: ONR Order #N00014-76-F-0023

University of California PO.Box 808 Livermore, California 94550 O Telephone (415)447-1100 O Twx 910-386-8339 AEC LLL LVMR

FOREWORD

This is an account of research work in advanced programmable
digital filter network technology performed during the latter part of
FY76 and FY76T by the Special Studies Group of the LLL Physics Department
for the Office of Naval Research, under ONR Order #N000l4-76-F-0023, along
the lines specified in LLL Phys. Prop. 76-101, which was submitted to ONR
in March 1976. This document reports satisfactory completion of all the
items of this proposal's Work Statement, and the successful accomplishment
of additional, related tasks which position this research project to
maintain a very aggressive pace in FY77, given adequate funding.

The work reported herein was performed by Harlan Lau, Richard
McWilliams, Thomas McWilliams, Joseph Simpson, Lawrence C. Widdoes, Jr.,
and Lowell Wood, of the Special Studies Group, with research sub-contact
assistance from Paul Levine and Kottappuram Mohiuddin of Stanford
University's Electrical Engineering and Computer Science Departments,
supervised by Professor Forest Baskett.

"This document is an account of work sponsored by the U. S. Government.
Neither the United States, nor the United States Energy Research and
Development Administration nor the United States Navy, nor any of their
employees, nor any of their contractors, subcontractors, or their
employees, makes any warranty, express or implied, or assumes any liability
or responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents that
its use would not infringe privately owned rights.

"This report is unclassified, and its distribution is unlimited.

Its reproduction or other use for any purpose of the U. S. Government is

authorized."

TABLE OF CONTENTS

Section

1. Introduction
1.1 Advantages of Parallel Processors

2. System Qverview
2.1 System Conf:guratlon
2.2 Processor Organization

3. Processor Architecture .
3.1 Caches .
3.2 Virtual Memory
3.3 Memory Access Modes
3.4 Synchronization
34.1 Interrupts . .
34.2 Read-Modify- Wnte
3.4.3 Munch Registers
' 3.4.4 Hardware Queues .
3.5 Status . .
3.5.1 Processor Status
3.52 User Status
36 Input/Output .
3.7 Instruction Set Defi mmon
3.7.1 Notation and Conventions
3.7.2 Registers and Memory
3.7.3 Instruction Formats ..
3.7.3.1 General Operand Address Specmcanon

3.7.3.1.1 Short-Operand Address Calculation

3.7.3.1.2 Extended Addressing
3.7.3.2 Three-Address Instructions
3.7.3.3 Two-Address Instructions .
3.7.3.4 Skip Instructions .
3.7.3.5 Jump Instructions .
3.7.4 Instruction Descriptions
3.7.4.1 Integer Instructions .
3.74.1.1 Integer Arithmetic
3.74.1.2 Increment and Decrement
3.7.4.2 Floating Point Instructions .
3.74.2.1 Floating Point Arithmetic
3.7.4.22 Floating Point Translation .
3.7.4.3 Arithmetic Compare Instructions .
3.74.3.1 Arithmetic Compare and Skip .
3.7.4.32 Arithmetic Compare and Jump

3.74.3.3 Arithmetic Compare and Set Flag .

3.74.4 Logical Operations . .
3.74.4.1 Logical Testing .
3.7.4.4.2 Logical Assignment .
3.7.4.4.3 Shift and Rotate.
37444 BIT REVERSE.

Page

N e

~7 b

10
13
14
14
15
15
15
16
16
17
17
18
19
19
20
22

24
25
26
27
27
28
29
29
31
32
33
34
35
36
37
38
39
39
40
41
42

ii ‘ ' TABLE OF CONTENTS

Section

37445 Bit Counting .
3.7446 BIT EXTRACT
3.74.5 Byte Pointer
3.7.46 List Manipulation .
. 3.74.6.1 Skipping List]nstructlons
3.7.4.6.2 Non-Skipping List Instructions .
3.74.7 Data Transfer . . N
2.74.7.1 Block Transfer .
3.74.72 Move and Exchange
3.7.48 Stack Manipulation
3.7.4.9 Subroutine Linkage
3.74.9.1 Jump to Subroutine . oo
3.7.4.9.2 Subroutine Context Switching .
2.7.4.10 Traps and Interrupts .
3.7.4.10.1 Trap Instructions
3.74.102 Soft-Error Trap
3.74.10.3 Hard-Error Traps .
3.74.10.4 Interrupt .
3.7.4.10.5 Trap and Interrupt Retums
3.74.11 Cache Control . .o
3.7.4.12 Page Map Control
3.74.12.1 KILL MAP .
3.7.4.12.2 Writing Segment Base Reglsters
3.7.4.13 Status Register Control .
3.7.4.13.1 Read Status
3.74.132 Write Status
3.74.14 Synchronization .
3.74.14.1 SET INTERRUPT
2.7.4.14.2 Test and Set/Reset .
3.7.4.14.3 Munch Registers
3.7.4.14.4 Hardware Queues .
3.7.4.15 Control Store .
2.74.16 Miscellaneous .
3.7.5 Sample Programs . .
3.7.6.1 Assembly Language Specnﬁcatlon .
3.7.5.1.1 OPCODE Field .
37512 GOTO Field . .
3.7.56.1.3 OPERANDS Field .
3.7.6.2 Use of the T Field . :
3.7.56.3 Compiled Treesort Comparisons
3.7.5.3.1 BLISS Treesort Algorithm .
3.7.5.22 LLL Filter Compilation .

3.7.56.3.3 BLISS-10 Compilation for PDP- 10
37534 BLISS-11 Compllatlon for PDP-11. . .

2.7.53.5 FORTRAN-H Compilation for IBM-370/168 .

3.7.54 Hand-Coded Quicksort Comparisons .
3.7.54.1 ALGOL-W Quicksort Algorithm

!

TABLE OF CONTENTS

-Section

3.7.6.4.2 LLL Filter Hand-Coding
3.7.564.3 PDP-10 Hand-Coding

4. Implementation
4.1 Processing Element .
) 4.1.1 IBOX/EBOX Commumcatlon
4.1.1.1 IBOX to EBOX Signals
4.1.12 EBOX to IBOX Signals
4.1.2 Instruction Box
4.1.3 Instruction Box Pipeline Tlmmg
4.1.3.1 Index Register File .
4.1.3.2 Instruction Address Arlthmetlc
4.1.3.3 Data Address Arithmetic .
4.1.3.3.1 Register Address Detection .
4.1.3.3.2 Data Address Arithmetic Control
4.1.3.3.3 T Register File

4.1.3.4 Instruction and Data Address Translatlon

4.1.34.1 Address Translation Cache .

4.1.3.4.2 Address Translation LRU Control .

4.1.3.5 Instruction Cache Memory .

4.1.3.5.1 Instruction Cache Memoty Module.

4.1.3.5.2 Instruction Cache Control
4.1.3.5.2.1 Cache LRU Control .
4.1.36 Data Cache and Register File . .
4.1.36.1 Cache and Register File Control
4.1.36.2 Data Cache Memory
4.1.3.7 Instruction Buffer and Decode.
4.1.3.7.1 Instruction Decode
4.1.3.8 EBOX Operand Registers .
4.1.39 Memory Interface
4.1.3.10 IBOX Control
4.1.3.10.1 Instruction Prefetch Control
4.1.3.10.2 P-Sequencer Control Unit .
4.1.3.10.3 I-Sequencer Control Unit . .
4.1.3.104 EBOX Write Address Registers
4.1.3.10.5 IBOX Write Control .
4.1.3.106 Register Address Generation
4.1.3.10.7 Micro Interrupts
4.1.3.10.8 Stop IBOX. .
- 4.1.3.10.9 'IBOX Timing Generator .
4.14 Execution Box
4.14.1 EBOX Register Flle .
4.14.1.1 EBOX Register File Control
4.14.1.2 36 Bit Translate . .
4142 EBOX ALU . .
41421 3 Input Adder . .
4.142.1.1 EBOX 40 Bit Full Adder

Page -

91
92

93
93
94
94
95
96
98
100
103
105
108
110
112
114
117
119
121
123
125
127
129
131
133
137
140
143
146
153
155
160
163
167
172
175
179
183
185
187
189
191
194
196
198
200

iv - TABLE OF CONTENTS

Section

4.1.4.2.1.2 Multiply Control .
4.1.4.22 Shift Box . .
414221 Shifter . .
414222 Sticky-Bit Generator .
4.1.423 Exponent Box . . .
41424 36 Bit MUX Merge .
41425 Q Register :
4.14.3 EBOX Control . .
4.14.3.1 EBOX Sequencer

4.1.4.3.1.1 12 Bit Branch Address Merger .

4.1.4.3.1.2 EBOX Branch Condition MUX
4.14.3.1.2.1 Repitition Counter
4.1.4.3.1.3 EBOX Control Store
4.1.4.32 Fixup Generator
4.14.3.3 Status Registers .
41434 EBOX Transmxtters/Recelvers
4144 Timing . e e
4.2 Interconnection Network .
5. Summary
6. References .
‘Appendix I: Abbreviations .
Appendix 2. Micro-Code Conventions .
Appendix 3. P-Sequencer Micro-Code Fields
Appendix 4: P-Sequencer Micro-Code Macros .
Appendix 5 P-Sequencer Micro-Code .
Appendix 6. I-Sequencer Micro-Code Fields
Appendix 7. I-Sequencer Micro-Code Macros .
Appendix 8: I-Sequencer Micro-Code
Appendix 9: E-Sequencer Micro-Code Fields
Appendix 10: E-Sequencer Micro-Code Macros
Appendix 11: E-Sequencer Micro-Code .

Appendix 12: Low-Level Macro Drawings .

Page

208
213
215
219
221
224
227
229
231
233
235
2317
239
244
247
249

253

255
273
274

275

278

279

281
282
307
313
314
318
332
336

355

-9

1. Introduction

This report describes the design of an extremely high performance programmable digital filter of
novel architecture, the LLL Programmable Digital Filter (LLL Filter).

Essentially all of the perceived Navy requirements for advanced digital processing systems may be
effectively addressed with parallel processing systems, in which relatively independent processing
units work in parallel on portions or sub-divisions of the entire problem, exchanging information
with each other during the course of processing. This is the case whether one is concerned
primarily with fleet defense.(in which various processors might provide local control and
monitoring of sensors or weapons systems while sharing information with each other on the time-
varying aspects of attack and defense parameter spaces, both within single ships and between
them), with SOSUS (in which each hydrophone array might have its own powerful processing
unit exchanging filtered information with essentially identical units in all other stations
monitoring a common region of the ocean, for coherent processing techniques such as aperture
synthesis, or for accuracy enhancement or reliability purposes), or weather prediction (in which
each processor might handle meteorological data acquisition and time-advanced extrapolation for
its own, relatively small section of the simulated air-ocean envelope, exchanging interface
condition information with those of its fellow processors responsible for ad jacent sections).

Moreover, the enormous demands on digital processing power which Navy requirements, of which
the foregoing are only examples, impose on modern digital processing technology appear to be
most fully satisfied in the foreseeable future only by extensive use of parallel processing techniques
and hardware. The doubling time for raw processing power from single processing unit
superprocessors (for example, the CDC 6600/7600 series) has been incredsing steadily over the last
decade, and presently appears to be more than 4 years, a sharp contrast to the 1.5 year figure
characteristic of the late 50s and early 60s. Parallel processing systems, on the other hand, are
capable of indefinitely great extension in raw processing power with essentially zero technological
risk and time lag, and moreover, with advance knowledge of system performance and thus cost-
effectiveness

We have therefore undertaken to determine the optimal structure of a parallel processing system
for addressing the specific Navy application centering on the advanced digital filtering of passive
acoustic ASW data of the type obtained from the SOSUS net.

e

e

2 ‘ Introduction _ 1.1

1.1 Advantages of Parallel Processors -

For problems which involve algorithms amenable to parallel processing ([Amdahl 1967],
[Ball 1962], [Carroll 1967], [Flynn 1966), [Katz 1970]), paraliel architectures can offer
certain major advantages over sequential architectures. The advantages result from the
modularity inherent in parallel architectures. These advantages can be categorized as advantages
of reliability, economy, and size.

The advantage of reliability has been discussed extensively (for example, see [Barker 1975] or
[Hamer-Hodges 1973]); failure of a single module may not entail failure of the entire system if
the module failure can be detected and the module replaced by a duplicate under program control. -

Of primary importance among the advantages of economy are the economies of scale in the
construction phase; by repeating the construction of a single processing element many times, the
total cost per processing element may be greatly reduced.

A second economy of scale comes in the design phase. Theoretically, the design cost per processing
element is reduced asymptotically to zero as the processing element is replicated. Actually, any real
parallel processor must include some design costs per processing element which grow as the
number of processing elements is increased, but these costs may be negligible.

A third important economy has been overlooked in previous parallel processor design efforts; it is
the potentially reduced time lag between the freezing of the system design and the delivery of the
first operational system. Although this time lag may include both hardware and software
contributions, the software contribution will be neglected in this analysis. Essentially, by
replicating a relatively simple processing element many times and using a regular interconnection
network, the lag time mentioned can be made very small; it is virtually independent of the
processing power of the total system. As a result, the semiconductor technology used in a properly
designed parallel processor can be nearly state-of-the-art, whereas the technology used in a more .
complex processing structure must be considerably more out of date. This time-lag phenomenon
will continue to seriously degrade the cost-effectiveness of delivered complex systems as long as
advancing semiconductor technology continues to provide exponentially more cost-effective
components, but may be essentially eliminated in advanced parallel processing systems.

One additional economy has also been overlooked in the past; this economy results from the
freedom of the parallel processor designer to choose the most cost-effective processing element
structure independent of the processing power of the element. Cost-effectiveness of sequential
processor structures is not constant over all levels of processing power. Although the specific
shape of the cost-effectiveness curve depends upon the technology available and upon the
characteristics of the target problem domain, for any specific technology and problem domain the
cost-effectiveness curve has a finite number of broad maxima. Because the design of a digital
processing system must be aimed not only toward maximum cost-effectiveness, but toward some
minimum processing power, designers of single processor sequential systems have not been able to
utilize structures with possibly higher cost effectiveness but lower processing power. On the other
hand, the designer of a parallel processor may be able to achieve a total cost-effectiveness which
is nearly the same as the cost-effectiveness of the processing element, and since the processing
element may not be constrained to have a large minimum processing power, to achieve higher
total cost-effectiveness.

Independent of these economic advantages is the advantage of size; regardless of whether it is
economically feasible to build increasingly powerful sequential systems, at some point it becomes
physically impossible (with state-of-the-art technology) to build these machines. It can be argued -

1.1 Introduction 3

that sequential systems of almost arbitrary speed can be built given enough resources, and so the
advantage of size reduces to the advantage of economy. However, from a practical viewpoint, at
some point the cost of a sequential system increases so rapidly with speed that this argument is
moot, and in addition, there are theoretical limits both in physics and mathematics to the speed of
sequential machines, and these limits do not apply to parallel processors working in appropriate
problem domains. This advantage of parallel processor structures is important because for the
forseeable future it will be desirable to build systems with more total processmg power; numerical
weather prediction with its real-time constraints is an obvious example.

These arguments about the advantages of parallel processors are applicable without modification
only if the target problem domain can utilize with high efficiency each processor in a parallel
processor system of arbitrary size. The suitability of various problems for parallel processing has
been the subject of much academic contention ([Amdahl 1967], [Flynn 1966),
(Minsky [971]). Unfortunately, only a few parallel architectures have proven economically
viable, so there has been little impetus to develop new algorithms for exotic parallel machine
architectures. We believe that the computational simulations of many large physical problems, for
example, the optimal SOSUS digital filtering. problem, are so well-suited for parallel processor
architectures and so important, that any one such simulation alone is sufficient justnf:catlon for
the intensive development of such digital processing technology.

2. System Overview

The LLL Programmable Digital Filter consists of high-performance processors that execute
independent instruction streams and access a common main memory via a crossbar interconnection
network (crossbar). All of main memory is uniformly accessible by every processor.

The crossbar arbitrates access by all processors to 16 block storage modules (BSMs) which are
interleaved on either the most significant or the least significant address bits (manually selectable).
Ignoring conflicts, approximately I micro-second is required to accomplish a memory read of four
36-bit words.

The crossbar contains facilities for logically disconnecting (amputating) any processor.

Amputation of processor P; can be invoked by any other processor P. In order to prevent

processors, errant due to either hardware or software reasons, from performing spurious
amputations, an amputator must, by convention, pass elaborate software correctness tests (which
will involve confirmation by other processors).

‘The programmable digital filter has been optimized to include 16 processors. Each processor

contains a novel dual cache, which buffers the interconnection network against processor accesses
to instructions and local variables. Processors do not have local memory. No connections exist
between processors except through the crossbar.

Interprocessor communication takes place in main memory; memory management hardware allows
protection of interprocessor communication. Interprocessor synchronization is accomplished by a
combination of primitive mechanisms including interrupts, which can be sent from any processor
to any one other processor over the crossbar, special mutual exclusion hardware, which is
addressed as memory, read-modify-write capability in the crossbar, and special memory access
modes (specified in the virtual-to-real map) which force some memory accesses to bypass the
caches.

An extremely high-level instruction set improves the individual processor performance by
reducing the number of instructions which need to be executed. Furthermore, natural addressing
modes are complex, and therefore the processor implementation separates addressing and
execution into three parallel micro-processors. The instruction set is horizontally micro-
programmed in writeable control store, and can therefore be extensively modified to reduce
execution time and code size for specific applications.

A large virtual memory space is provided in order to allow the architecture and software to
remain fixed while memory costs decline and real memory size increases.

2.1 System Configuration
Figure 2.1-1 shows an overview of the LLL Prograrﬁmable Digital Filter.

Main memory is divided into a number of block storage modules (BSMs) that can be
simultaneously and independently accessed by any of the processors. When two or more
processors demand access to any one BSM, memory contention logic establishes a queue. The
queueing discipline is such that no processor can access a given memory BSM twice before a
processor desiring to access that BSM is allowed to access it once.

Each processor communicates with the crossbar over two unidirectional 25-bit cables. The

2.1 ' System Overview ' - b

crossbar communicates with memory over two unidirectional 50-bit cables. Internally, the crossbar
switch is 25 bits serial in each diréction.

Main memory provides a path for interprocessor communication. Interprocessor synchronization
is accomplished by means of munch registers, which appear as memory locations, hardware
queues, which are accessed as memory locations, read-modify-write capability in the crossbar, and
inter-processor interrupts. Interrupt requests are sent through the crossbar and are handled by
the interrupt controllers. Whenever a processor is interrupted by its associated interrupt
controller, it performs memory accesses to determine the nature of the interrupt.

Input/output is accomplished in two ways. For low speed 1/O devices such as terminals, data is
transferred by the writing and reading of the 1/O control words, which are addressed as memory,
and are located in the various memory controllers. Each low-speed 1/O device is attached to some
specific interrupt controller, and thus can interrupt one processor. The interrupted processor may
then forward the interrupt. High-speed 1/O devices (for example, disks) are handied by a direct
memory access (DMA) port, which communicates with main memory in the same way as all the
processors do.

We summarize the the major characteristics of the system architecture as follows:
- Muitiple (16) identical processors execute independent instruction streams.

- Every processing element can uniformly address ail system memory through a (25-
bit serial) crossbar switch.

- Each processing element has dual private caches to reduce contention for main
memory, to reduce average memory access time, and to insure that system
performance does not seriously degrade as more processing elements (and
therefore a bigger and slower interconnection network) are added.

- 'Each processmg element can direct an interrupt to/ other processing element.
: K

- Munch registers, hardware queues, and read- modnfy—wnte memory capability are
available for synchronization.

- . The virtual-to-real memory maps include access mode bits which allow efficient
sharing of data and instructions.

7

System Overview

MEMORY BANK 8

2.1

J

Bsh @
60
"o
ni LO-SPEED HI-SPEED
1,0 1.0
"
" INT CTL
2]
L3
ne
"
CROSSBAR SWITCH
na
ne
me
s MEMORY BANK 14
ma2
BSt 14
"3 o
m o
me LO-SPEED HI-SPEED
PO P1 P2 P3 Pa PE P6 P? PB P9 P10P11 P12 P13 P14 P16 J 1.0 10
26
L7L__ INT CT
26 26 L
/1 /
MEMORY BANK 15
I’ COrm i CONN COrN
|
! | 8% 16
i PrROC O i PROC 14 DA PORY
‘ !
|
‘ o il bl LO-SPE ED HI-SPLED
1.0 1,0
| N cn
. g e
/] /] /]

Figure 2.1-1
System Configuration

2.2 System Overview ‘ , 7

2.2 Processor Organization

The processors shown in Figure 2.1-1 are complete high-performance computing elements which
could be used in either a uniprocessor or multiprocessor configuration; they are extremely cost
effective in either environment.

The processor architecture and design are described in Section 3 and Section
4. The basic processor organization is shown in Figure 2.2-1.

Each processor has dual high-speed caches; one contains only instructions, and the other contains
data. Writes ordinarily do not update main memory, but affect only the caches (see Section
* 3.1 and Section 3.3 for full detail).

A virtual-to-real address map in each processor translates addresses generated by instructions into
addresses used by the hardware, and also defines access modes for memory pages. A page can be
tagged as not cacheable, in which case it is never placed in the cache, and all writes to the page
then write through to main memory. '

The Instruction Box (IBOX) contains a general-purpose micro-programmed sequencer, which
executes out of writeable control store. The IBOX performs all operations required to decode
instructions and fetch operands. In particular, the IBOX performs the virtual to physical address
translation, implements the various memory access modes, handles communication with the
crossbar, and fields interprocessor interrupts.

The IBOX also controls the Execution Box (EBOX). The EBOX performs all arithmetic and
logical operations except those involved in addressing. The organization of the EBOX is similar
to that of the IBOX; it contains a micro-programmed controller and internal registers. The
EBOX is designed for high-speed floating point arithmetic; its floating point algorithms allow
three rounding modes; true stable rounding, ceiling rounding, and floor rounding.

, 70 INTERRUPT CONTRO

L

System Overview

22

INSTRUCTION BOX (1BOX)

N

TO MAIN MEMORY

INSTRUCTION
CACHE MEMORY

INSTRUCTION BOX

DATA

CONTROL

N

CACHE MEMORY

EXECUTION BOX (EBOX)

REGISTERS
ARITHMETIC
LOGIC UNIT
EXECUTION BOX
CONTROL
i !
! 3 TEMPORARY

> REGISTERS

Figure 2.2-1

Processor Organization

3. Processor Architecture

We summarize the processor’s major architectural features as follows:

- A very large (2% word) virtual address space to allow each processor to uniformly
address any system memory of feasible size in the forseeable future.

- Efficient mechanisms for allowing the executive to communicate with user
processes.

- A high-level instruction set ideally suited for compilers.

- An instruction set specifically tailored to reduce the frequency of pipeline
interlocks in a high-performance implementation.

- The capablhty to perform three-operand instructions through the use of a unique
"T-field" descriptor.

- Comprehensive floating-point capability, including three rounding modes and the
option to trap on excess pre- or post-normalization.

- The capability to directly perform operations on operands of ¢ precisions:
quarter-word, half-word, single-word, and double-word.

- Special instructions for dealing with the muitiprocessor environment.

Certain processor implementation details are included in this section for clarity; processor
implementation-is fully described in Section 4.

3.1 Caches

Each processor has a private cache; this cache reduces memory contention and reduces access time
for areas of locality, thereby lowering the performance requirements for the switching network
and main memory.

The cache is implemented in two parts; the instruction cache, and the data cacke. Both caches can
be read simultaneously, allowing instructions representable in one word, requiring only one
execution cycle, and having at most one memory operand to be executed continuously at a rate of
one instruction per cache cycle (approximately 100 nano-seconds); the instruction set has been
optimized so that instructions of this type predominate dynamically. Each cache is set-associative,
with a set size of 4 and a capacity of 4K words (1K lines of 4 words each).

The instruction cache retains only locations accessed as instructions, and the data cache retains
locations accessed as operands of an instruction. (Note that instruction words may be accessed as
data.) The hardware insures that no memory word is contained in both caches as follows:
Instructions are always fetched from the instruction cache. If a necessary instruction is not
resident in the instruction cache, then a 4-word line is fetched from the data cache or memory, in
that priority, and is evicted from the data cache. If the line was marked as having been altered in
the data cache, then it is written out to memory. The instruction cache contains no mark bit;
writes and data reads always access the data cache. If a necessary data line is not resident in the
data cache, then it is fetched from the instruction cache or memory, in that

10 | Processor Architecture 3.1

priority, and is evicted from the instruction cache. This discipline insures that no. memory word is
contained in both caches simultaneously, with the disadvantage that it forces slow transitions
between writing and executing or executing and writing any block of instructions.

The cache uses physical addresses to tag entries, allowing the software to switch virtual address
spaces without sweeping the cache, and eliminating the problem of clogging the cache with
multiple copies of shared read-only data. :

For communication or synchronization reasons, it will be necessary at times to insure that certain
variables are not present in the cache of a specific processor. Access modes may serve this
purpose, as described in Section 3.3, but in addition two special instructions are
provided: The instruction "KILL DATA V,L" sweeps the data cache, writing to memory (if
marked) and invalidating every entry which has a virtual address U such that V<UsV+L-1 (L is
assumed to be a count of quarter-words). The instruction "KILL INSTR V,L" performs an
identical function for the instruction cache (in which no entry is ever marked). The instruction
"KILL DATA INSTR" performs both sweeps.

For reasons of efficiency, it may be convenient to avoid invalidating the cache residents swept by
the KILL instructions. A special instruction is provided for this purpose: The instruction
"UPDATE DATA V ,L" sweeps the data cache, writing to memory (if marked) every entry which
has a virtual address U such that V<U<V+L-1 (L is assumed to be a count of quarter-words).
No analogous instruction is provided for the instruction cache, since instruction cache entries
cannot be marked.

' Depending upon the magnitude of L. in these KILL and UPDATE instructions, the hardware
may sweep the entire cache instead of individually sweeping each location in the specified range.

‘No instructions are provided which, when executed on processor P, cause the cache of processor
P; (i=j) to be swept. This necessary function will be accomplished by directing a special interrupt
from P; to P; which causes P; to sweep its own cache. '

»
3.2 Virtual Memory

The LLL Filter uses paging to map 30-bit virtual addresses to 30-bit real addresses (although the
particular implementation of the LLL Filter described in Section 4 uses only 28-bit
real addresses). '

The virtual-to-real address map is shown in Figure 3.2-1. A virtual address space is
uniquely identified by the contents of the segment base register, which is the main memory address
of the segment pointer table for the address space, or is a pointer to the disk address of same. The
segment pointer table is a contiguous list of segment table pointers. Each segment table pointer is
either the main memory address of a segment table, or the disk address of same, or is null,
indicating that the segment table does not exist. Each segment table is a contiguous list of page
table pointers. Each page table pointer is either the main memory address of a page table, or the
disk address of same, or is null, indicating that the page table does not exist. Each page table
contains a list of page table entries. Each page table entry contains either the main memory
address of a page, or the disk address of same, or is null, indicating that the page does not exist.

An address translation in general involves three memory references, one to the segment pointer
table, one to the segment table and one to a page table; the segment base register is a hardware
register inside the processor. A page map in each processor contains (for the most recently used
pages) the complete translation from virtual page address to real page address. :

32 Processor Architecture 11

The processor contains two hardware page maps; one transiates addresses of locations accessed as
instructions, and one translates addresses of locations accessed as data. Each page map is
implemented as a set-associative memory with a set size of four and a capacity of 64 entries,
therefore 128 address translations can be stored simultaneously in the processor. An entry may be
stored in both page maps. '

The processor hardware actually contains two segment base registers, EXEC_SEG_BASE_REG,
and USER_SEG_BASE_REG; an instruction may conveniently specify that either be used in
mapping each memory operand of an instruction (see the discussion of the M bit in Section
3.7.3.1.2). Each page map entry contains a bit called the base bit, which identifies which of
the two segment base registers the entry is associated with. The address space specified by
EXEC _SEG_BASE_REG will be called the executive address space, and the address space
specified by USER_SEG_BASE_REG will be called the user address space.

Whenever a segment base register is altered, all page map entries associated with that segment
base register must be invalidated: The instruction "WRITE EXEC JUMP X,J" loads
EXEC_SEG_BASE_REG with X, invalidates all page map entries associated with
EXEC_SEG_BASE_REG, and jumps to location J. The instruction "WRITE USER JUMP X,]J"
loads USER_SEG_BASE_REG with X, invalidates all page map entries associated with
USER_SEG_BASE_REG, and jumps to location J. '

In user mode, any reference to the executive address space causes a trap to the executive trap
vector at address REF_EXEC. The executive may refer to the user address space without

trapping.

Whenever a necessary translation is not resident in a page map, the necessary entry is fetched
from memory and placed in the page map. A page map resident may be evicted in this process,
but page map residents need not be written to memory when evicted. Whenever an entry is
fetched from memory, the reference bit is set in the page table entry in memory; this reference bit
is used by the operating system in the page replacement algorithm. ‘

The data cache page map contains a mark bit for each entry. When a write occurs, if the page
written is unmarked in the data cache page map, then the mark bit is set in the appropriate page
table entry in'memory and in the data cache page map. If the page written is marked in the data
cache page map, then the page table entry in memory is not modified. Mark bits are not
necessary in the instruction cache page map since all writes are done to the data cache.

Whenever the executive needs to modify page table entries to reflect the changing configuration
of real memory, a protocol must be invoked which removes invalidated page table entries from
the two page maps of each processor. The hardware refills the page maps directly from main
memory, bypassing the caches, therefore invalidated page table entries need not be removed from
the caches. Special instructions are provided for removing entries from both page maps
simultaneously: For example, the instruction "KILL USER MAP V" will remove any entry in the -
instruction cache page map or the data cache page map which maps virtual address V in the user
address space to any real address. The protocol mentioned above then requires that the processor
_P,, executing the operating system, interrupt each processor P; which may have in its page maps
the entty to be modified, and cause each such P, to execute a KILL USER MAP instruction.

3.2

Virtual to Real Address Translation

12 Processor Architecture
VIRTUAL ADDRESS
8 6 6 8
2 78 13 14 19 20 27 28 | 29
SEGMENT
"POINTER TABLE

. e . QW/HW SELECTION

& SEGMENT TABLE

<

A\

S LS F | 38 B 8

ac

§ PAGE TABLE

o T

> L 2

[WE)

w

256
-~ F[28 31 A PAGE
64 e
F: VALID BIT
1SK/M
D EMORY FLAG . oD
A: PAGE ACCESS MODE BITS
256
Figure 3.2-1

33 Processor Architecture | 13 -

3.3 Memory Access Modes

Each page table entry includes bits which specify the access modes of the page. The names and
meanings of these bits are as follows: ‘

Instructions. If this bit is false, then a hard trap to the executive at trap vector
'NOT_-_INSTRUCTION will occur when a location from this page is accessed as an instruction.

Data. If this bit is false then a hard trap to the executive at trap vector NOT_DATA will occur
'when a location from this page is accessed as an operand of an instruction. ‘

Read-through. If this bit is true, then any read of a location on this page will cause a memory
access to occur; the resulting data will be placed in the cache if and only if the location is already

a cache resident. ’

Write-only. If this bit is true, any read from a location on this page will cause a hard trap to the
executive at trap vector WRITE_ONLY. '

Wrhte_allocate. If this bit is true, then any write miss will allocate a cache entry and the data will
be written into the allocated entry. Write hits will simply update the cache entry. If this bit is
false, then a write miss will not allocate a cache entry.

Write-through. If this bit is true, then any write will update memory. If the write is a write hit,
then cache will be updated as well. If the write is a write miss, then if and only if the write-
allocate bit is true, a cache entry will be allocated and written.

The combination in which both write-allocate and write-through are false is reserved to mean
"read-only”. A write to a read-only page will cause a hard trap to the executive at trap vector
READ_ONLY. '

Combinations of these bits allow us to obtain many useful access modes, of which the following
are examples:

Local-data (data A write-allocate) A cache miss caused by reading an operand from a local-data
page causes the four-word block containing the missed word to be read over the switching
network and placed in the data cache. Writes to local-data pages do not write through to main
memory. Whenever it is important that the memory shadow of a local-data page be made
identical to the cache, the "UPDATE DATA" or "KILL DATA" instruction must be executed to
update main memory. It is intended that the private variables of a process be identified as local-
data pages; cache sweeping will be necessary if the process ever moves to another processor.

Cached-read-data (data) A cache miss in a cached-read-data page causes the missed word to be
read over the switching network and placed in the cache. No writes are allowed to a cached-
read-data page; such a page is created by writing it as a local-data page, executing the instruction
"UPDATE DATA" or "KILL DATA", and finally changing the appropriate page table entries to
convert the page into a cached-read-data page. A cached-read-data page is destroyed by
destroying the access route to the page, that is, by destroying all information about it in page
tables in memory, and removing it from ail page maps. Although locations from a cached-read-
page may be resident in the cache, they will be replaced by new cache residents. Since locations
from a cached-read page can not be marked in any cache, no cache sweep is necessary to destroy
such a page. *

14 Processor Architecture 33

Static-code (instructions). A static-code page is similar to a cached-read-data page, that is, it is
cached, created, and destroyed in the same way as a cached-read-data page. However, locations
on a static-code page can be accessed only as instructions. It is intended that shared routines will
be identified as static-code.

Dynamic-code (instructions A data A write-allocate). In order to avoid the large overhead of
cache sweeping and page-table modification, some programs may write dynamic-code pages and
execute them immediately. Dynamic-code pages are the same as local-data pages, except that
locations from these pages may be accessed both as instructions and as data.

Shared-data (data A read through A write-through). Words from shared-data pages are never
placed in the cache. A write to a shared-data page writes through to main memory without
writing in cache (write-allocate is false), and a read from a shared page reads directly from main
memory. /O registers and munch registers (see Section 3.4) are on shared-data pages.
In addition, locations which are heavily shared by multiple processors are on shared pages,
eliminating the necessity to perform repeated cache sweeps when passing small amounts of data
between processors. '

3.4 Synchronization

Several mechanisms are provided to allow efficient process synchronization: interrupts, read-
modify-write memory capability, munch registers, and hardware task queues.

3.4.1 Interrupts

Each BSM; contains one interrupt controller, which is directly attached to processor P; by four
interrupt lines, INT_LINE<0:3>, as shown in Figure 2.1-1. The function of the interrupt
controller is to receive interrupts from 1/O devices (both low- and high-speed), which are directly
connected to the interrupt controller, and from processors, which send interrupts through the

crossbar, and to assert the interrupt lines accordingly. '

The interrupt controller contains four 36-bit registers, INT_REG[0:3])<0:35>, which can be
accessed over the crossbar as memory locations. The sole function of the interrupt controller is to
set INT_LINE<i> if and only if INT_REGlil<j>=1 for some j Each I/O device is connected to
~one bit of one INT_REG; the 1/O device interrupts by setting that bit. No I/O device is
connected to INT_REG[0]. Any processor P; may interrupt any other processor P; by setting some
bit in Ps INT_REG[0]. Specifically, "SET INTERRUPT J,I" executed by any processor sets
location] to (J or I) using a read-modify-write memory access. By convention, when P; interrupts.

P;, P; will set bit i in P;’s INT_REG[0].

Whenever INT_LINE<k> to processor P; is asserted, P; compares its current priority (PRIO) to k,
which is the priority of the interrupt. If and only if PRIO is less than k, P; will acknowledge the
interrupt by resetting a bit in its interrupt register INT_REG(k] under micro-code control. If
more than one INT_LINE is asserted, then the INT_LINE with the higher priority will be
acknowledged first.

After acknowledging the interrupt, P; interrupts to the executive at a specific interrupt vector, the .
address of which depends upon the identity of the I/O device or processor which caused the
interrupt; that identity is fully determined by the index of the bit in INT_REG[k] which caused
the interrupt and which P; reset in acknowledgement. Section 3.7.4.10 contains a complete

description of flow of control during an interrupt after interrupt acknowledgement.

3.4.2 Processor Architecture 15

3.4.2 Read-Modify-Write

The crossbar network has the capability to perform read-modify-write memory cycles. This
capability is used to implement special instructions such as “TEST AND SET", and
“INTERRUPT", and to implement hardware queues. Normal instructions which access a memory
location as both a source and the destination do not use read-modify-write memory access
capability.

To perform a read-modify-write memory access, processor P, under micro-code control, sends a
read-modify-write request to the crossbar. The crossbar causes the addressed memory module to
read and returns the data to P, The crossbar prevents any other processor from accessing the

selected memory module until P; returns a write.

3.4.3 Munch Registers

We borrow the concept of munch registers from Steele ([Steele 1975]). Associated with each
processor is at least one munch register. Munch registers are identified by their page table entries
as being shared-data. The instruction "MUNCH SKIP NOT FULL ADR M,V" executed by
processor P; translates V into a real address R and writes R into the munch register at address M.
The munch register controller allows R to be written into M if and only if no other munch register
contains R, otherwise the controller writes zero into M. After writing to M, P; reads M and skips

if and only if the result is non-zero, that is, if and only if there was no conflict.

Munch registers can also be read and written with normal memory-reference instructions, in
particular, a munch register M is returned to the free state by writing zero into it. Note that the
munch register controller always checks conflicts on writes to munch registers, even in the case in
which zero is being written to the munch register.

Munch registers are designed primarily to allow processors to enqueue on very small data elements
without wasting storage by having a separate flag for each element. Munch registers are
implemented as an associative memory with special control logic connected to a memory port. Any
munch register is accessible by any processor, but munch registers will be allocated by software to
processors, and that allocation will be enforced by the memory mapping hardware. There are
enough munch registers to allocate several to each processor.

Note that the executive will update the munch registers when evicting or re-loading munched
pages.

3.4.4 Hardware Queues

There exist several hardware queues which are addressed -as memory locations. Special
instructions such as "QUEUE" and "DEQUEUE" manipulate the hardware queues by using read-
modify-write memory accesses. For example, when processor P; performs a "QUEUE SKIP NOT
FULL ADR QX" instruction, in a read-modify-write cycle, it reads the state of the hardware
queue at address Q, and if the queue is not full, places X on the queue and skips to ADR. 'If the
queue is full, then P; places nothing on the queue (writing to a dummy location in the queue
controller in order to satisfy the crossbar that the read-modify-write cycle has been completed)

and does not skip. '

Hardware queues allow the rapid dispatching of tasks without the necessity of using munch
registers or TEST AND SET instructions. Both FIFO and LIFO queues are being provided.

- 16 . Processor Architecture : 35

3.5 Status

The hardware register STATUS:REG<0:35> contains both processor and user status. The
processor status can be accessed only in executive mode, whereas the user status can be accessed in
either executive or user mode. ;

3.5.1 Processor Status

The processor ‘status portion of STATUS_REG is accessible only by means of the instructions
"READ FULL STATUS", and "WRITE FULL STATUS JUMP" these instructions read or
write the entire STATUS_REG, including both processor and user status. The processor identity
(PROCESSOR _1D<0:35>) is a unique number for each physical processor; it is considered part of
the processor status and is read with the instruction "READ PROC ID". The execution of any of
these instructions in user mode causes a hard trap to the executive at trap vector address

STATUS_ACCESS.

The fields included in the processor status are as follows:

SP _ID<0:4>
Stack pointer identity. This field is the address of the register used as the stack pointer in some
instructions. The stack limit is always the next contiguous register. SP refers to the stack pointer

register, and SL refers to the stack limit register.

EXEC_FILE<0:1>
Executive register file. This field is the index of the register file used for operands and

addressing in the executive address space. (See Section 3.7.2 for reserved file indices.)

USER_FILE<O:1>

User register file. This field is the index of the register file used for operands and addressing in
the user address space. Furthermore, when executing in the executive address space, the lowest 32
single-words of the address space refer to these registers, not to real memory locations. (See

Section 3.7.2 for reserved file indices.)

USE. SHADOW

Use shadow registers. If this bit is set, then memory addresses 0 to 127 (the first 32 single-words
of the virtual address space), when mapped in the user address space, actually access memory
locations; otherwise, these memory addresses access the user register file.

PRIO<0:2>
Processor priority. Interrupts with priority less than or equal to this number will not interrupt the

processor.

EXEC MODE
Executive mode. The executive is currently in execution if and only if this bit is set; privileged

instructions may be executed without trapping.

TRACE_TRAP
Trace trap. After any instruction, perform a hard trap to the executive at trap vector address
TRACE. The effects of changing this bit do not appear until after the instruction following the
instruction which changes the status word.

3.5.2 Processor Architecture 17

3.5.2 User Status

Tﬁe user status portion of STATUS_REG is accessible in either user mode or executive mode,
only by means of the instructions "READ USER STATUS", and "WRITE USER STATUS
JUMP". This portion of the STATUS_REG will also be called USER_STATUS_REG.

The fields included in USER_STATUS_REG are as follows:

COND<0:4>
Arithmetic condition codes negative, zero, overflow, carry-out, and underflow. Every floating-
point and integer operation may set these condition codes. Only floating-point operations set -

underflow.

INT_TRAP
Allow integer overflow traps. Integer overflow will soft trap to the trap vector at address

INT_OVFL.

FLOAT._TRAP
Allow floating-point underflow and overflow user traps. Floating-point underflow will soft trap

‘to the trap vector at address FLOAT_UNDFL. Floating-point overflow will soft trap to the trap

vector at address FLOAT_OVFL.

"PRE_LIMIT<0:5>

Prenormalization limit. If a floating-point number is prenormalized more than this amount and
PRE_TRAP is true, then a soft trap will occur to the trap vector at address PRE_OVFL. The
value PRE_LIMIT<0:5>=63 is reserved by the hardware to mean "never trap".

POST_LIMIT<0:5>

Postnormalization limit. If a floating-point number is postnormalized more than this amount and
POST_TRAP is true, then a soft trap will occur to the trap vector at address POST_OVFL.
The value POST_LIMIT<0:5>=63 is reserved by the hardware to mean "never trap".

- 3.6 Input/Output

The processor performs 1/0O by manipulating 1/O registers which are logically located in the main
memory address space and physically located in the 1/O controllers. : -

Each 1/O device (both low- and high-speed) has a direct connection to its /O registers (which
are located in one 1/O controller). Protection of I/O devices from access by unauthorized
processes is accomplished by using the memory protection facilities (Section 3.3). I/O registers
must be marked in each page map as shared-data so that they will not be placed in the cache.

As explained in Section 3.4.1, each /O controller can interrupt only one processor, and therefore
each 1/O device can directly interrupt only one processor. However, any processor receiving an
interrupt may forward that interrupt to any other processor by means of the interprocessor
interrupt facility.

18 Processor Architecture 3.7

3.7 Instruction Set Definition

The processor executes instructions which are from one to three 36-bit words in length. With
certain restrictions on the addressing modes, many instruction types can operate on 9, 18, 36, or 72
bit operands, called quarter-word (qw), half-word (hw), single-word (sw), and double-word (dw),
respectively.

We first consider the justifications for a 36-bit word (as opposed to a 32-bit word). First, without

devastating changes, the LLL Filter instruction format would not fit into 32-bits. Furthermore, it

is important for an entire address to fit in a single word, and for there to be room left in the word

to specify an index register and an indirect bit (as in the PDP-10). Finally, a 36-bit word allows
reasonably large addresses to be packed in a half-word; a 32-bit word does not.

The disadvantages of a 36-bit word are (1) that it is incompatible with a number of machines,
and (2) that it makes addressing standard 8-bit bytes difficult. In answer to the second problem,
the LLL Filter allows quarter-word addressing (a quarter-word is a 9-bits); considering the
exponentially decreasing cost of memory, it seems reasonable to waste the extra bit in those
"applications which cannot find a use for it.

In order to allow more efficient utilization of memory, the LLL Filter includes the PDP-11 feature
which allows most instructions to operate on multiple operand sizes; in this case the sizes are
quarter-word (9-bits), half-word (18-bits), single-word (36-bits), and double-word (72-bits). One
major problem with multiple operand types is the necessity to shift addresses; the IBM-370 and
PDP-11 can spend a large fraction of their time shifting array indices. To overcome this
problem, the LLL Filter includes addressing modes which automatically allow an index to be
shifted left 0, 1, 2, or 3 places; this feature makes it convenient for a compiler to work with arrays
composed of any of the basic operand types.

Another design goal was to simplify the task of writing a compiler that produces compact and
efficient code. All operand addressing in the LLL Filter is completely symmetrical, that is, every
operand uses the same address computation procedure. The LLL Filter also provides the reverse
form of all non-commutative operations, and allows indexing off of local variables on the stack.
Because of the operand addressing symmetry, a compiler can perform code generation almost
independently of deciding which variables are to be on the stack and ‘which are to be in high-
speed registers.

The most important single design goal was to allow convenient access to a very large address
space; such an address space may allow a new architecture to survive for a long period even in
face of exponentially decreasing memory costs, thus amortizing the expensive software
development effort.

The LLL Filter architecture includes multiple-word instruction formats (one to three 36-bit
words) in order to allow sufficiently powerful instructions that the code density lost in specifying
~large addresses is not important. Using the LLL Filter instruction format, the total number of bits

needed to represent a program is in general less than the number needed to represent the same
program on the IBM-370, and approximately equal to the number needed on the PDP-10.
Section 3.7.5. gives a number of examples to substantiate this claim.

The instruction set is horizontally micro-coded in writeable control store. The instruction set
definition which follows is fixed in some respects, for example, in the operand addressing modes,
 but the data paths in the implementation are sufficiently general and the control store is large
enough that the instruction set can be exterisively modified, either by the inclusion of new special

3.7 Processor Architecture ' 19

purpose instructions, or by the replacement of existing instructions; such modification simply
involves writing new micro-code.

3.7.1 Notation and Conventions

Bits in a word, quarter-words, and half-words are numbered from left to right (most significant
to least significant). The bits in a word are numbered from 0 to 35, and subfields in a word are
referenced by the notation X<i:j>, where i is the bit number of the high-order bit in the field,
and j is the bit number of the low-order bit of the field. Using this notation, the quarter words
in'a word X are X<0:8>, X<%:17>, X<18:26>, and X<27:35>; these quarter-words are numbered 0,
1, 2, and 3, respectively.

In a number of places in the description, a field is used as a signed two's complement number. If
F is such a field, then the notation SIGNED_F (or simply S_F) refers to F considered as a two's
complement number. ‘

Some instructions operate on a pair of data ob jects, such as two quarter words, or two single
words. If X is the first object of such a pair, then second one is refered to as NEXT_X. X and
NEXT_X are contiguous, that is, if X and NEXT_X are addresses of ob jects of length L. quarter
words, then NEXT_X = X + L.

3.7.2 Registers and Memory
The processor hardware includes 4 stacks of 32 registers each, REG_FILE[0:3](0:31]<0:35>.

REG_FILE[USER _FILE<0:1>){0:31] and REG_FILE[EXEC_FILE<0:1>){0:31] will sometimes be
called USER_R[0:31] and EXEC_R[0:31], respectively. R[0:31] will mean USER_R[0:31] if
EXEC_MODE-=0, and will mean EXEC_R[0:31] if EXEC_MODE-=1.

Certain instructions make use of a stack pointer and stack limit register, called SP and SL,
respectively. SP will mean R[SP_ID], and SL will mean R[SP_ID+1], where SP_ID is the stack
pointer identity field in the STATUS_REG.

Registers can be addressed as memory; the lowest 32 single-word addresses of the executive
address space refer to EXEC_R[0:31], and the lowest 32 single-word addresses of the user address
space refer to USER_R[0:31].

REG_FILE[0] is dedicated for use by the hardware and micro-code. REG_FILE[0][0:31] will also
be called TEMP[0:31], since it contains many hardware temporary locations. In the following
sections we will refer to some registers in REG_FILE[0] by name as follows:
EXEC_SEG_BASE REG Executive segment base register.
| USER_SEG_BASE_REG User segment base register.

REG_FILE[O] can be accessed by the executive by setting USER_FILE<0:1>=0 and referencing
the registers as memory locations in the user address space.

REG_FILE[1:3) are not dedicated; it is intended that they will contain executive and user
registers.

20 Processor Architecture 3.7.2

The instruction set gives hardwired functions to some registers, as shown below:

R[0] no short indexing allowed

R{1] ~no short indexing allowed

R[2] no short indexing allowed

R{3] program counter (PC)

R[4] low-order word of temporary register RTA (RTA[0])
R[5] high-order word of temporary register RTA (RTA[1])
R[6] low-order word of temporary register RTB (RTB[0])
R(7] high-order word of temporary register RTB (RTB[1])
R[9] general purpose register

R{30] general purpose register (receives first parameter of trap)
R[31] general purpose register (receives second parameter of trap)

The reglsters RTA and RTB can be used as a third address in some instructions, as explained in
Section 3.7.3.

The instruction set can manipulate the R registers as easily as memory locations, and special
instructions are provided for saving and restoring R ‘registers during interrupts, traps, and
subroutine calls. ’

Unless otherwise specified, all addresses in this description are quarter-word addresses. Directly
addressable main memory consists of 230 quarter-words which can also be accessed as half-words,
single-words, or double-words.

In order to facilitate computing with data of multiple precisions {qw, hw, sw, and dw), instructions
are included for each precision. Some instruction types operate on only a subset of the possible
precisions, for example, floating point instructions operate only on single-word and double-word
operands. Most instructions assume that both source operands and the destination are of the
same precision, although some instructions are provided for converting from one precision to
another,

Half-word operands must lie on half-word boundaries, single-word operands on single-word
boundaries, and double-word operands on double-word boundaries. Any violation of this
boundary rule will cause a hard trap to the executive trap vector at address
BOUNDARY_ERROR. The registers in the register file are considered to lie on contiguous
single-word boundaries. Instructions must lie on single-word boundaries.

Note that a quarter-word add, for example, specifying R[16] and R[17] as source operands and
R[18] as the destination operand, will add the high-order quarter-word of R[16] to the high-
order quarter-word of R[17], and store the quarter-word result in the high-order quarter word of

R[18]

3.7.3 Instruction Formats

Every instruction is either one, two, or three 36-bit words in length. The first instruction word
includes the opcode, and specifies part or all of the address computation for the operands. The

3.7.3 Processor Architecture 21

second and third instruction words are used for long immediate constants and for extended
addressing.

Four basic instruction formats apply to the first word of an instruction, as follows:

Three-Address Instruction

TOP T 0Dl 02

8 91081112 23 24 35

Two-Address Instruction

XoP 001 002

e 1112 232 35

Skip Instruction

SOP | SKP 0D1 002

8 78 1112 23 24 35

Jump Instruction

JOP PR 001 J

8 ig 1112 . 23 24 35

TOP, XOP, SOP, and JOP are opcodes. ODI and OD2 are general Operand Descriptors; they
_specify general operands which can be memory locations, registers, or constants. (It should be
noted that the address computation algorithm is identical for the ODI and OD? fields.) The T
field specifies how to use the registers RTA and RTB as a third operand in the instruction. SKP
-and] specify a skip distance and a jump distance or jump address, respectively. PR specifies -
whether to use J as an offset to the PC or as the descriptor of a memory address (as are OD1 and

OD2).

The three-address instruction format allows two general memory addresses to be specified, along
with a third operand, either RTA or RTB. This instruction format provides most of the
advantages of a true three-address format (that is, the elimination of "move” instructions to make
copies of operands at the beginning of an expression), but costs only two bits in the instruction

word. :
[

The two-address instruction format allows two general memory addresses to be specified, and is
primarily used in data transmission instructions (which have one source and one destination

operand).

The skip instruction format allows a forward skip of from 0 to 7 words, or a backward skip of 1
to 8 words (from the location of the current instruction); it is useful for implementing small
conditional loops and IF-THEN-ELSE statements.

22 Processor Architecture 3.7.3

A jump instruction having PR=1 can jump anywhere in the range of PC+2047 to PC-2048 words
(where PC is the address of the next instruction), and in that case requires no additional word to
specify the jump address. If PR=0, J may specify any memory address, at the possible expense of
requiring an additional instruction word.

3.7.3.1 General Operand Address Specification

We first consider some notation and conventions. If X is the address of a memory location, then
MI[X] will mean the contents of that location. The length of MI[X] will be clear from context, it
may be either quarter-word, half-word, single-word, or double-word.

Indefinite-level indirect addressing is denoted using the character "e", and is defined as follows:
Let IAP (Indirect Address Pointer) be the contents of a register or memory location:

IAP; Format for Indirect Address Pointer

I | REG A

8 1 56 ' 35

Then eIAP is an address, defined as follows:

RE

IAP

ot
@

0 =0 A

1 0 eM[A]

0 %0 A+RIREG)
1 =0 eM[A+R[REG]]

‘The evaluation of all operands (including the jump or skip destination) Ioglcally occurs before the
execution of the instruction (and before the PC is updated).

The evaluation of a general operand proceeds in two steps, which are discussed in the following
sections.

3.7.3.1.1 Short-Operand Address Calculation

A short operand can be one of the 32 registers R[0:31], a memory location which is addressed as a
short affset from a register, a short immediate constant, or several other entities. The name "short
operand” derives from the fact that such operands require only a short descriptor in the
instruction. An exact definition follows. :

3.7.3.1.1 . Processor Architecture ' 23

The 12-bit operand descriptor fields (ODI and OD2) specify short operands, and may also
specify extended indexing. They have the following format, where the bit numbers are relative to
the origin of the field:

OD: Format for OD! and OD?2

X |1 F | REG

8 1 2 67 11

These fields specify extended indexing (X), indirection (I), a short offset (F), and a register name
(REG). A short operand (SO) is defined as the location specified by the fields I, F, and REG; it
is evajuated as follows:

1 F REG Short Operand (SO) Mode Name

0 0-31 0 R[F} register-direct

1 0-31 0 M[eR[F]] register-indirect

0 0-31 1 S_F short-constant (-16 to +15)
1 0-31 I 0 short-zero

0 0-31 2 0-31 . (reserved)

1 0-31 2 0-31 (reserved)

0 0-31 3-31 MIRIREG}+S_Fx4] short-indexed

i 0-31 3-31 MI[eM[RIREGI+S_Fx4] short-indexed-indirect

IF X=0, then the value of the operand described by OD is simply SO, as above. Addressing
modes in which X=1 are described in the next section.

All memory address mapping is done in the own address space when calculating short operands.

Short-zero mode is provided only as an escape to allow absolute memory addressing; short-zero
mode with X=1 addresses memory absolutely, as explained in the next section.

It is intended that all of the simple variables (i.e. local variables on the stack and own variables)
be accessed directly in short-indexed mode. Short-indexed mode is of such utility that we call
locations accessed using this mode pseudo-registers (or P registers).

The only variables that can not be conveniently addressed using the short-operand addressing
modes are arrays and variables which are allocated at absolute addresses in memory. Such
locations are accessed by using extended addressing modes, as described in the next section.

24 Processor Architecture 3.7.3.1.2

3.7.3.1.2 Extended Addressing

Extended addressing is specified by setting the X bit in the operand descriptor (OD1 or OD2).
In extended addressing mode, the next word in the instruction stream is used in the operand
calculation. This word is either the second or third word of the instruction, and has one of these

formats:

E: Format for fixed-base extended addressing

I 181D N S . ADDRESS

B 1 2 3 4 656 35

V: Format for variable-base extended addressing

1]1lolm| s |RG| . DISPLACEMENT
8 1 2 3 4 56 18 35
. C: Format for long constant

36-BIT IMMEDIATE CONSTANT

0 : .35

Given that the X bit is set in the operand descriptor (OD1 or OD?2), then, with one exception, the.

‘additional word in the instruction is used to calculate an extended address, and is interpreted

either as fixed-base format (E), or variable-base format (V), depending upon the value of the V
bit (bit 1) of the word itself. The exception noted is that if the operand descriptor specifies short-
constant mode, then the additional word is interpreted as a long constant (C), and provides a 36-
bit immediate constant which is used as the operand. This addressing mode is called long-
constant mode. In the following discussion we will ignore long-constant mode.

The first step in the extended address calculation is to calculate the base address BASE to be
used in the indexing operation. If the the additional word in the instruction "has fixed-base
format (E), then BASE is given by '

BASE := ADDRESS

If the additional word in the instruction has variable-base format (V), then the register RIREG]
contains the base address, and DISPLACEMENT is an additional offset as follows:

BASE := R[REG] + SIGNED_DISPLACEMENT.

Let SO be the short operand specified by the operand descriptor. If the indirect bit (I) in the
extended word is zero, then the value of the operand addressed by using extended addressing is

MIBASE + 50%2%]
If the indirect bit is one, then the value of the operand is

MIeMIBASE + SOx2°]]

3.7.3.1.2 ' Processor Architecture 25

It should be noted that the extended addressing mode always includes an indexing operation, but
that if short-zero is the short-operand addressing mode, then SO=0, and the address computed
using extended addressing is just BASE. Note also that automatic address shifting occurs in
extended addressing mode, that is, the value SO is shifted left by S bits (where S is a field in the
extended word) before being added to BASE.

The M bit facilitates communication between the executive and the user, which operate in
different address spaces, by allowing instructions executed by the executive to have either operand
mapped in either the user or the executive address space. Only the final address mapping in the
operand calculation procedure is affected by the M bit, as follows:

M. EXEC MODE Final Mapping Space

0 0 User address space.

0 1 Executive address space.

I 0 (Hard trap to REF_EXEC.)
1 1 | User address space.

Table 3.7.3.1.2-1
M Bit Interpretation

The duplicate bit (D) specifies that the two operands of the instruction use the same extended
instruction word; it simply inhibits the program counter from being incremented after the first

operand is evaluated. This feature is useful when both operands are elements of the same array,
but are accessed using different index registers.

3.7.3.2 Three-Address Instructions

Three-address instructions have the format:

e | T ool | 002

0 910 11 12 23 24 35

The TOP field includes the opcode and specnfues the precision (qw, hw, sw, or dw) of the
operation.

Fields OD1 and OD2 are general operand descriptors, as described in Section 3.7.3.1; they may
denote R registers, P registers, general memory locations, or immediate constants.

The two-bit T field specifies whether RTA or RTB is used as the third address of the
_instruction, where ODI and OD?2 specify the other two addresses. Specifically, the operation .
evoked by a three-address instruction is described using the names DEST, Sl, and S2, for
example, DEST«S1eS2, or DEST«S526S1, where "¢" means the operation evoked by the TOP
field, and S2, S1, and DEST have meanings as shown in the following table. In this table, OP1
means the operand described by field OD1, and OP2 means the operand described by field OD2:

26 Processor Architecture 3.7.3.2

T DEST St s2

00 oPI OPI . op2
01 OP! RTA OP2
10 RTA OPI OP2

I . RTB OPI OP2

Table 3.7.3.2-1
T Field Meaning

These addressing modes are sufficient to allow any FORTRAN assignment statement except those
of the form "A<B+C" or "A«B(I+J)xC(K+L)}+D(M+N)XE(L+P)" to be evaluated with no move
instructions to make copies of operands or to store away the result of the expression. The first
exception clearly needs a full three address instruction if it is to be evaluated in one instruction,
and the second requires a third RT register. Because of the binary nature of arithmetic operators,
all other types of expressions require only two RT registers. For example, if two of the subscripts
of the second example were the same, or if one the subscripts were a simple local variable, or were
of the form "I+ j+K", then two RT registers would be sufficient to evaluate the expression with no
move instructions. In Section 3.7.5.2 some examples are given which show code using the
RT registers. :

Preliminary evidence suggests that for typical FORTRAN assignment statements, LLL Filter code
using the RTA and RTB registers contains .5 to .7 times the instructions necessary for the PDP-
10.

3.7.3.3 Two-Address Instructions

Two-address instructions have the fo_rmat:

XoP 001 002

% 11 12 23 24 35

The XOP field includes the bp-code and specifies the precision (qw, hw, sw, or dw) of the
operation.

‘Fields OD1 and OD2 are general operand descriptors, as described in Section 3.7.3.1; they may
denote R registers, P registers, general memory locations, or immediate constants.

3.7.34 Processor Architecture , , 27

3.7.3.4 Skip Instructions

Skip instructions have the format:

SOP SKP 001 0D2

(7 78 1112 23 264 35

The SOP field includes the op-code, specifies the precision (qw, hw, sw, or dw) of the operation,
and specifies the condition on which a skip will be taken.

Fields OD1 and OD2 are general operand descriptors, as descnbed in Section 3.7.3.1; they may.
denote R registers, P registers, general memory locations, or immediate constants.

The SKP field contains a skip distance in words. If the skip condition is false at the end of the
current instruction, then the next instruction to be executed is the next sequential instruction. If

theskip condition is true, then the quarter-word address of the next instruction to be executed is
PC+4*SIGNED SKP, where PC is the address of the current instruction.

3.7.3.5 Jump Instructions

Jump instructions have the following format:

JoP PR 001 J

8 10 11 12 23 24 35

The JOP field includes the op-code, specifies the precision (qw, hw, sw, or dw) of the operation,
and specifies the condition on which a jump will be taken.

Field OD1 is a general operand descriptor, as described in Section 3.7.3.1; it may denote an R
reglster P register, general memory location, or immediate constant.

The] field specifies a jump destination JUMPDEST. It is interpreted differently depending
upon the value of the PC-relative (PR) bit. If the PR bit is one, then JUMPDEST is
PC+4xSIGNED_] where PC is the address of the current instruction. If the PR bit is zero, then
J is taken to be a general operand descriptor (OD2), and JUMPDEST is the address of the
operand described by that operand descriptor.

Jumps to the user address space performed in executive mode hard trap to the executive at trap
vector address JUMP_USER; all control transfers to the user address space must be performed by
means of "TRAP EXEC", "RETURN FULL STATUS", and "WRITE FULL STATUS JUMP"
(which may change the mode to user, then jump).

28 ' Processor Architecture 3.7.4

3.7.4 Instruction Descriptions .

This section describes the instruction set which is currently being micro-coded for the LLL Filter.

.For the sake of clarity, we have not used a formal descriptive system, but have developed our own

set of largely intuitive descriptive mechanisms and conventions.

Each instruction is defined by showing the opcode string of the instruction and the operation of
the instruction. The opcode string contains terms which are separated from each other by one or
more spaces and together uniquely define the instruction.

This section also describes sequences of operations which are not instructions (for example, the
interrupt procedure). The opcode string column for such sequences shows a function name (in
italics), and the function’s formal parameters. A function defmed in this way may be called from
the definition of any instruction.

Curly brackets are sometimes used in writing terms of the opcode. Several strings (sub-terms)
may be grouped in curly brackets and separated by commas, for example {Q,H,$,D}; this notation
means that any one of the bracketted strings may be substituted in place of the brackets and
everything enclosed in the brackets.

The curly-bracket notation may also be used in the operation column. Let X and Y represent any
two curly-bracketted strings such that the number of sub-terms X; of X is equal to the number of
sub-terms Y; of Y. Then if X appears in the opcode column, Y may appear in the operation
column, with the following meaning: If an opcode is constructed by choosing X; in place of the
term X, then the operation of that opcode is formed by replacing Y by Y, In some cases, more
than one curly-bracketted term is used in the opcode column; let W and X be two such terms. In
this case, if curly-bracketted term Y appears in the operation column, Y corresponds to only one
of W and X, that correspondence will not be formally specified, but will be obvious.

Undefined but intuitive functions appear in italics in the operation column.

The names OP] (OPerand 1), OP2 (OPerand 2), S1 (Source 1), S2 (Source 2), and DEST
(DESTination), have the meanings described in Section 3.7.3.2.

Let X represent any of the strings OP1, OP2, S§1, $2, or DEST. Then ADDRESS_X means the
memory address of X. Note that registers have memory addresses.

During the execution of one mstrucnon "PC" will mean the address of the instruction currently in
execution, "PC_NEXT_INSTR" will mean the address of the next instruction in the execution

-sequence, and "PC_LAST_INSTR" will mean the address of the previous instruction in the’

execution sequence.

The LLL Filter instruction set includes "reverse operations" for all non-commutative instructions
with two source operands and a destination operand, that is, instructions of the form
"DEST«OP! e OP2" where "o" is a non-commutative operator. A reverse operation is indicated
by the inclusion -of the term "V" in the opcode string. Reverse operations reverse the order of
their source operands before performing the operation. For example, "SUB V OP1,0P2" means
"OP1«OP2-OP1" whereas "SUB OP1,0P2" means "OP1<OP [-OP2".

Reverse operations are provided in order to allow evaluating "A«<B e A" and "A«B @ RTA" in
one instruction, where A and B here represent memory addresses, RTA is a special temporary

register (see Section 3.7.3.2), and "e" is a non-commutative operator.

3.74 _ Processor Architecture 29

Note that the opcode strings shown in the following sections are not necessarily assembler
mnemonics; they are simply unique names for the hardware operations. An assembler will allow
omission of some terms and simplification of others; an intelligent assembler, for example, would
infer the "V" term of the opcode string from the order of the three operands of the instruction.

3.7.4.1 Integer Instructions

Integers are represented in two'’s complement notation. All integer instructions operate on data of
any integer precision, that is, quarter-word (Q), half-word (H), single-word (S), or double-word
(D). The precision of the operation is indicated by including the appropriate term (Q, H, S, or D)
after the opcode. For operations which take two operands, both operands must be of the same
precision.

Integer operations are done in the precision of the source operands, except for extended precision
operations (eg. "MULT L {Q,H,5,D}"), which are done in double precision.

3.7.4.1.1 Integer Arithmetic

TOP T 001 002

9 91811 12 23 24 35

Reverse operations are provided for the non-commutative operations SUB, QUO, REM, and
DIV. :

Extended precision operations (eg. long multiply and long divide) are indicated by including the
term "L" (Long) in the opcode string.

" 30 ' | Processor Architecture ' 3.74.1.1

Opcode String ' Operation -

ADD - {Q,H,3,D} DEST«S 1482

SUB - {QHS,D} DEST«S1-52

SUB VvV {QHSD} DEST«52-S1

MULT {QH,S,D} DEST«S1%52

MULT L {QH,S,D} (DEST,NEXT_DEST)«S 1%52
Quo {Q,H,S,D} DEST«S1/S2

QUO VvV {QHSD} DEST«52/S1

QUO L {Q,H,5,D} DEST«(S1,NEXT_S1)/s2
QUO L V {QHSD} DEST«(S2NEXT_S2)/S1
.REM . {Q,H,$,D} DEST«S1 mod S2

REM VvV {QHS.D} DEST«S2 mod S1

REM L {QH,S,D} | DEST«(SI,NEXT_S1) mod $2
REM L V {QHSD} DEST«(S2NEXT _S2) mod S1
DIV {QH,S,D} DEST«51/52

NEXT_DEST«S1 mod S2

DIV \% {Q,H,S,D} DEST«S2/S1
NEXT_DEST«S2 mod S1

DIV L {Q,H,S,D} DEST«(SI,NEXT_S1)/$2
» NEXT_DEST«(SI,NEXT_S1) mod S$2

DIV LV {Q,H,S,D} ' DEST«(S2NEXT_S2)/S
NEXT_DEST«S2,NEXT_S2) mod S|

- 37412 Processor Architecturé 31

3.7.4.1.2 Increment and Decrement

XOP 001 C o

) 1 12 23 24 35

The increment (INC) and decrement (DEC) instructions provide the capability to perform either
of the operations OP 1«OP2+1 or 0P1+0P2-1 in one instruction.

QOpcode String Operation
INC {QH,SD}. OP1<0OP2+1

DEC {QH.S.D} j ' OPl<OP2-1

32 ~ Processor Architecture | 3.74.2

3.7.4.2 Floating Point Instructions

Floating point precisions are single-word (S), and double-word (D), whereas integer precisions are
quarter-word (Q), half-word (H), single-word (S), and double-word (D). The floating point
arithmetic instructions require one floating point precision to be specified, and the floating point
translation instructions require either a floating point precision and an integer precision or two

floating point precisions to be specified.
Single-precision floating point numbers have the following format:

Single-Precision Floating Point Number

S} EXP MANTISSA<B: 26>

81 839 35

where S is the sign, EXP is an excess-128 exponent of 2, and MANTISSA is a normalized binary
fraction.

If X is a positive floating point number (single or double precision), then the floating point
number -X is represented by the two’s complement of X, so that integer comparison operations
yield the correct results for floating point operands.

Double-precision floating point numbers have the following format:

Double-Precision Floating Point Number

S| EXP MANTISSA<9: 26> : MANTISSA<27:62>

g1 889 3% 8 35

where S, EXP, and MANTISSA represent the sign, exponent, and mantissa of the double-
precision floating point number, as above.

Any floating point operation may be either floor rounded (FR), ceiling rounded (CR), or stable
rounded (SR) (see [Kahan 1973]);, these modes are indicated by including the appropriate
characters as a term in the opcode string. Floor rounding yields the closest floating point number
less than the true result (equivalent to truncation since the number system is two’s-complement),
ceiling rounding yields the closest floating point number greater than the true result, and stable
rounding yields the closest floating point number if that number is unique, otherwise it yields the
closest floating point number with a "0" as the least-significant bit.

3.74.2.1 Processor Architecture ' 33

3.7.4.2.1 Floating Point Arithmetic

TOP T 001 002

8 916 11 12 ' 23 24 35

Most floating point arithmetic instructions combine two operands of one floating point precnslon
and store into a destination of the same floating point precision. The operation precision is
indicated by including the appropriate character in the opcode string.

Long floating multiply (FMULT L) takes two single-word floating point numbers and multiplies
them to form a double-word floating point number. Long floating divide (FDIV L) dwndes a
double-word by a single-word and produces a single-word.

Reverse operations are provided for the non-commutative operations FSUB and FDIV.
As explained above, the terms "FR", "CR", and "SR" in the opcode string imply floor rounding

(truncation), ceiling rounding, and stable rounding, respectively. For example, "FMULT FR S"
means “multiply single-precision floating point numbers with truncation.”

QOpcode String , Operation

FADD ' {FR,CR,SR} {S,D} DEST«S1+82

FSUB {FR,CR,SR} {S,D} DEST«S1-S2

FSUB v {FRCRSR} {SD} - DEST«S2-S1

FMULT {FR,CR,SR} {S,D} DEST«S 1%S2

FMULT L {FR,CR,SR} - (DEST,NEXT_DEST)eS 1%52
FDIV {FR,CR,SR} {S,D} DEST«S1/S2

FDIV vV {FR,CRSR} {S,D} DEST«S2/S1

FDIV L {FR,CR,SR} DEST«(SINEXT_S1)/S2

FDIV L V {FRCRSR] DEST(S2NEXT_S2)/S|

34 Processor Architecture 3.74.2.2

3.7.4.2.2 Floating Point Translation

- XOP 001 002

) 11 12 23 24 35

+

The floating point translation instructions translate floating point to integer, integer to floating
point, and floating point to floating point, in each case performing floor rounding, ceiling
. rounding, or stable rounding.

Floating point numbers may be of any floating point precision, that is, single-word (S), or double-
word (D), and integer numbers may be of any integer precision, that is, quarter-word (Q), half-.
‘'word (H), single-word (S), or double-word (D). In addition to the floor-rounding (FR), ceiling-
rounding (CR), and stable-rounding (SR) terms, each floating point translation opcode string
includes a two character precision term; the first character specifies the destination precision, and
the second character specifies the source precision. For example, "FLOAT SR SD" means
"translate with stable rounding a double-word integer to a single-word floating point number.”
For symmetry reasons, all translate instructions include rounding modes.

Opcode String Operation

FIX {FR,CR,SR} {QH,S,D}{S,D} | OP ifix(OP2)
FLOAT {FRCRSR} {$D}{QH,S.D} OP lfloat(OP2)
TRANS {FRCRSR} S$D OP lfloat_trans(OP2)

TRANS {FRCRSR} DS OP lefloat_trans(OP2)

3.7.4.3 . Processor Architecture 35

3.7.4.3 Arithmetic Compare Instructions

The arithmetic compare instructions compare two operands, possibly incrementing, decrementing,
or adding to the destination operand, and skip (-8 to +7 words from the location of the current
instruction), jump (anywhere), or trap (to a fixed virtual address) conditionally on the outcome of
the comparison. Throughout these sections, PC refers to the address of the current instruction.

With two exceptions, the arithmetic compare instructions assume that both operands are of single-
word length. These exceptions are "SKIP {COND} {QHSD}, and "JUMP {COND} 0
- {Q,H,5,D};" each allows specification of the length of the operands (Q, H, S, or D). Both operands
must be of the same length, ,

Every arithmetic compare instruction performs integer comparison. The format of floating point
numbers guarantees that integer comparison produces the correct results for floating point
operands. On the other hand, some arithmetic compare instructions add to the destination
operand, and this addition is integer addition; those particular instructions are not intended to be
used with floating point operands.

In the instruction definitions which follow, we have used "{COND}" in the opcode strings to
represent "{N,G,E,GE,LNELE,A}", abbreviations for the eight conditions on which an arithmetic
compare instruction can skip or jump; these abbreviations mean never, greater, equal, greater or
equal, less, not equal, less or equal, and always, respectively. "{COND]}" is also used as a function

symbol (with obvious meaning) in the description column of these opcodes. '

The opcode strings in these instructions may include the terms in the following table, and these
_ terms uniformly have the meanings shown:

Opcode Term Meaning
| INC Add one before comparison.
‘DEC Subtract one before comparison.

0 - The comparison is with 0.

36 ' . Processor Architecture 3.7.4.3.1

3.7.4.3.1 Arithinetic Compare and Skip

SoP SKP 001 0b2

] 78 1112 23 24 35

The field SKP in these instructions specifies a 4-bit (signed) skip distance (in words). Depending
upon the result of the compare instruction, the next instruction to be executed is either at PC, or

at PC+4xSIGNED _SKP.

These instructions are important in that they allow two general operands to be specified in a
compare instruction. The SKP field of 4 bits in many cases ehmmates the need for including a

jump instruction after the compare.

Opcode String ’ ’ Operation
INC SKIP {COND} OP1<OPl + |

if OP1 {COND} OP2
then PC«PC+4xSIGNED_SKP

DEC SKIP {COND} ' OP1<OPI - 1
if OP1 {COND} OP2 .
then PC<PC+4xSIGNED_SKP

SKIP {COND} {QH.5,D} if OP1 {COND} OP2
o then PC<PC+4xSIGNED_SKP

3.74.32 Processor Architecture 37

3.7.4.3.2 Arithmetic Compare and Jump

JOP PR 001 J

e 18 11 12 232 35

In the following instruction definitions, JUMPDEST refers to the jump destination. As described

“in’Section 3.7.3.5, JUMPDEST is computed in one of two ways, depending upon the value of the
PC-relative flag (PR). If PR is true, then] is taken to be a signed 12-bit PC offset, and
JUMPDEST is PC+4xSIGNED_J. If PR is false, then] is taken to be a general operand
descriptor (see Section 3.7.3.1), and JUMPDEST is the result' of evaluating that operand
descriptor. In either case, JUMPDEST: is computed before the execution of the arithmetic- compare-
and-jump instruction.

Note that the 12-bit PC relative jump (PR true) is included only to increase code density. All
instructions in this section can be written with PR true or PR false; this symmetry makes the jump
length decision relatively orthogonal to other decisions in code generation.

These instructions allow only one general operand address (OD1), since the field of the instruction
normally reserved for a second operand descriptor (OD2) instead contains the jump address.

Opcode String . - Operation
INC JUMP {COND} " OPI1«OPI1 + |

if OP1 {COND} NEXT_OPI
then PC JUMPDEST

DEC JUMP {COND} OPI<OPI - |
if OP1 {COND} NEXT_OPI

then PC« JUMPDEST

INC JUMP {COND} 0 OP1+OPI1 + |
: ' if OP1 {COND} 0
then PC« JUMPDEST

DEC JUMP {COND} 0 OP1OPI - |
. if OP1 {COND} 0
then PC< JUMPDEST

JUMP {COND} 0 {QHSD} if OP1 {COND} 0
. then PC« JUMPDEST

JUMP ‘ PC«JUMPDEST

(note: this is the same instruction
as "JUMP A 0")

28 Processor Architecture 3.7.4.3.3

'3.7.4.3.3 Arithmetic Compare and Set Flag

ToP T 001 002

8 916 11 12 23 264 35

These instructions perform an arithmetic comparison and set the destination to all zeroes or all
~ ones depending upon the result; zeroes indicate false and ones indicate true.

The source operands may be of any integer length (Q, H, S, or D). The destination operand is
‘always a single word. ‘ : .

Opcode String Operation
SET FLAG {COND} {QHSD} DEST«S1 {COND} $2

3.7.4.4
3.7.4.4 Logical Operations

3.7.4.4.1 Logical Testing

Processor Architecture " 39

SOP SKP

001

0D2

0 78

11 12

23 24 35

The logical test instructions test a group of flags (OP1) under a mask (OP2) and conditionally
skip (-8 to +7 words from the location of the current instruction) depending upon the result. The
operands can be any integer Iength (Q, H, S, or D), but the flags and mask must be of the same

length.

The opcode strings in the following instruction definitions contain the terms in the following
table, and these terms have the meanings shown:

Opcode Term

CcT

Z
NZ

Meaning

Complement OP | before anding
(ie. use Complement with True).

Skip if the result is Zero.

Skip if the result is Non-Zero.

If OPI is a word of flags, and OP2 is a mask which selects a subset of the flags, then these
instructions can be used to test various combinations of the flags, as follows:

. Ogcode’

AND SKIP Z
AND SKIP NZ
AND CT SKIP Z
AND CT SKIP NZ

Opcode String
AND SKIP {ZNZ}

AND CT SKIP {ZNZ}

{QH.S,D}

{Q,H,S,D}

Meaning

Skip if no selected flag is set.

Skip if any selected flag is set.
Skip if all selected flags are set.
Skip if not all selected flags are set.

Operation

if (OP1AOP2) {=,#} 0
then PC<PC+4%SIGNED_SKP

if (not(OP 1)AOP2) {=,#} 0

.then PC«PC+4xSIGNED_SKP

40 Processor Architecture 3.74.4.2

3.7.4.4.2 Logical Assignment

*

TOP T 001 002

0 91011 12 23 24 35

The logical assignment instructions perform a logical operation on S1 and $2 and assign the result
to DEST. The operands of logical assignment operations may be any integer length (Q, H, S, or
D), but both operands must be of the same length.

The terms CT and TC are used with the following meaning: CT implies that Sl is
complemented before the logical operation (use Complement and True), and TC implies that $2 is
complemented before the logical operation (use True and Complement).

Opcode String - Operation

AND {QH.S.D} | DEST«S1nS2
AND TC {QHSD} DEST«S 1Anot(S2)
AND CT {QH,S,D} DEST enot(S 1)AS2

'NOR {Q,H,$.D} DEST «not(S 1)Anot(S2)
OR {QH.$,D} DEST«S1vS2 -

OR TC {QHSD} DEST S lvnot(S2)
OR CT {QHSD} ' DESTenot(S 1)vS2
NAND {Q,H,S.D} DEST«no(S 1)vnot(S2)
XOR {Q,HS,D} DEST«S1 xor S2

EQV {Q,H,S,D} DESTenot(S1 xor $2)

3.74.4.3 o . Processor Architecture 41

3.7.4.4.3 Shift and Rotate

) TOP T 001 D2

-8 ‘9108 11 12 23 24 35

The shift and rotate instructions take operands which are any integer length (Q, H, S, or D). The
shift count is always a single-word.

All shift and rotate instructions are non-commutative, therefore each instruction is provided in
reverse form.

The term "A" (Arithmetic) in the opcode string implies that the operation is arithmetic, otherwise
the operation is logical.

Opcode String - QOperation

SHIFT {LEFT,RIGHT} {QH,S,D} DEST«S1 logical {LEFT,RIGHT]}

shifted by S2

SHIFT {LEFTRIGHT} V {QHSD} DESTeS2 logical {LEFT,RIGHT}
shifted by S1

SHIFT {LEFT,RIGHT} A {QH,S,D} DEST«$1 arithmetic {LEFT,RIGHT}
shifted by S2

SHIFT {LEFT,RIGHT} A V {QHSD} DEST«S2 arithmetic {LEFT,RIGHT}
shifted by Sl

ROT {LEFT,RIGHT} {QHSD} DESTeSI rotated {LEFT,RIGHT]} by S2

ROT {LEFT,RIGHT} V {QHSD} DEST«S? rotated {LEFT,RIGHT} by S1

42 Processor Architecture : : 3.74.4.4

3.7.4.4.4 BIT REVERSE

XOP 001 002

8. 11 12 23 24 - 35

BIT REVERSE reverses the bits in a quarter-word, half-word, single-word, or double-word. .

Opcode String : Operation
BIT REVERSE {QH,;S,D} oP l«-bit_reverse(OP?)

3.7.4.4.5 Bit Counting

Y

X0P 001 002

8 11 12 23 24 - 35

BIT COUNT counts the number of one bits in an operand; it is useful for counting the number

.of elements in a set, where bits in a word represent elements in a set, as in common’

implementations of PASCAL.

BIT FIRST finds the bit number of the first one bit of an operand; it is useful for computing the
index of. the first element of a set.

Opcode String | Operation
BIT COUNT" {Q,H,S,D} OP i«(number of one bits in OP2)
BIT FIRST {Q,H,S,D} OPle(index of the first one bit in OP2)

(The search is from the left to the right.)

3.74.46) - Processor Architecture 43

3.7.4.4.6 BIT EXTRACT

TP | T oot 002

%) 91611 12 23 24 35

BIT EXTRACT was suggested by Professor John McCarthy; it is particularly useful for
extracting a set of flags from a word in order to do an N-way branch on them. S1, §2, and
DEST are assumed to be of the same length. :

BIT EXTRACT is non-commutative, and is therefore provided in reverse form.

Opcode String Operation
BIT EXTRACT {QHSD} . DEST is set to the value

obtained by extracting the bits
in S1 that correspond to the
ones in S2, then squeezing
them to the right in DEST.

"BIT EXTRACT V {QH,S,D} DEST is set to the value

obtained by extracting the bits
in S2 that correspond to the
ones in S1, then squeezing
them to the right in DEST.

44 Processor Architecture © - 3.74.5

3.7.4.5 Byte Pointer

XOP 01 002

f

0 11 12 23 2% 35

The byte pointer instructions operate on bit-strings of arbitrary size (less than or equal to 36 bits),
which are called bytes. These instructions all use a two word BYTE POINTER, which has the

format:

BYTE POINTER

LENGTH POSITION

I | REG A A

81 56 18 26 27 35

LENGTH is the size of the byte, and POSITION is the bit-number of the first bit in the byte.
The second word of the BYTE POINTER is a standard Indirect Address Pointer (see Section
3.7.3.1), which evaluates to the address of the word which contains the byte.

The LENGTH and POSITION fields are each 9 bits long, therefore quarter-word instructions
can be used to manipulate them. The LENGTH and POSITION fields must specify a byte
contained entirely within a word. When incrementing a BYTE POINTER, the hardware adds
LENGTH to POSITION, then, if the result is greater than 35, sets POSITION to 0 and
increments A. Byte-ad justment is similar. '

The function byte takes an argument which is the address of a byte pointer. The value of byte(X)
is the bit string described by the byte pointer X.

Opcode String Operation
LBYTE ' Load BYTE
OP l«byte(OP2)
DBYTE | Deposit BYTE.
BYTE(OP1)-OP2
'ADJ BYTEP ADJust BYTE Pointer
: OP1<OP1 byte-ad justed by OP2
LBYTE INC Load BYTE and INCrement
OPI1<BYTE(OP?)

OP2«OP2 byte-incremented

DBYTE INC Deposit BYTE and INCrement
BYTE(OP1)«OP2 '
OP1<OP1 byte-incremented

3.7.4.6 Processor Architecture 15

3.7.4.6 List Manipulation

The list manipulatiori instructions operate on lists which have two-word list headers, where the
first word points to the first element of the list, and the second word points to the last element of

-the list. An empty list is represented by zero in the first word of the list header. These lists are

assumed to be linked together by the first word of each element; the last element contains a zero

link.

3.7.4.6.1 Skipping List Instructions

SoP SKP 001 0b2
7] 78 1112 23 24 35
Opcode String Operation
LIST POP SKIP EMPTY "Remove an element from the head.

(OP2NEXT_OP2) is the list header.
OP1 gets the address of the first element
of the list. If the list is empty, then

the instruction skips.

if OP2=0
then PC«PC+4xSIGNED_SKP
else begin
OP1<0OP2
OP2«M[OP2]
end

LIST POP SKIP NOT EMPTY Remove an element from the head.

) (OP2NEXT_OP2) is the list header.
OP1 gets the address of the first element
of the list. If the list is not empty, then
the instruction skips.

if OP2 =0
then begin
PC«PC+4xSIGNED_SKP
OPi<OP2
OP2«M[OP2]
end

- 46 Processor Architecture 3.7462 |

3.7.4.6.2 Non-Skipping List Instructions

Xop - oot 002
B 112 2326 35
Opcode String Operation

LIST PUSH Add an element to the head.
: (OPI,NEXT_OPI) is the list header.
OP2 points to the element to be
added to the head of the list.

MIOP2]-OP1
if OP1 = 0 then NEXT_OP1<OP2
OP1<0OP2

LIST APPEND ’ : Add an element to the tail.
(OPILNEXT_OPI) is the list header.
OP2 points to the element to be
added to the tail of the list.

M[OP2}-0
if OP1 = 0 then OP1<OP2
" NEXT_OP10P2

LIST POP TRAP » Remove an element from the head.
' (OP2NEXT_OP?) is the list header.
’ OP1 gets the address of the first element

of the list. If the list is empty, then the
instruction soft traps to the trap vector
at address LIST _UNDFL.

if OP2=0
then soft_error(LIST_POP,PC)
else begin
OP|«0OP2
OP2«M[OP2]
end

3.7.4.7 Processor Architecture 47

3.7.4.7 Data Transfer

3.7.4.7.1 Block Transfer

XopP 001 0D2

2 11 12 23 24 35

The block transfer (BLT) instruction transfers a block of data from one location in memory to
another.

(OP2,NEXT_OP2) is the descriptor of the source block. This descriptor has double-word length;
the first word is the address of the block, and the second word is the length of the block in
quarter words. OPI is the address of the destination block.

The operands of a BLT are continuously updated so that if an interrupt occurs during a BLT,
the BLT can be restarted. It is therefore important that the values of the operands not be used to

calculate their own addresses.

Opcode String: Operation

BLT = {QHSD} BLock Transfer.

for 10 step {1,2,3,4}
until NEXT_OP2-{1,2,3,4} do
M[OP1+1]«M[OP2+I]

OP2OP2+NEXT_OP2
OP1<OPI+NEXT_OP2
NEXT_OP2«0

48 . Processor Architecture 3.74.7.2

3.7.4.7.2 Move and Exchange

XOP 001 002

(%] 11 12 23 24 35

The "MOV" instructions move an operand of any integer length (Q, H, S, or D) to another .
operand of any integer length. The source and destination lengths are specified by including the
appropriate characters together in the opcode string, with the destination length preceding the
source length.

In addition, the "M OV " opcode strings may include special terms which specify the move type as
shown in the opcode descriptions below. For example, "MOV N DS" means "negate a single
precision integer and move it to a double precision integer.”

EXCH assumes that the both operands are of the same precision.

Opcode String Operation

MOV =~ {QHSD}HQH.S D} OP1<OP2

MOV S {QH,SD}{QH,SD} OP lesign_extend(OP2)
MOV {12 .. 8} for Ie1 step 1 untit {12, ... 8}

do M[ADDRESS_OP1+I-1]«
M[ADDRESS_OP2+I-1]

(Note that MOV 1 and MOV 2 are
the same as MOV 8 S and MOV D D))

MOV C {QHSD} OP lenot(OP2)
MOV N {QHS,D} OP letwos_negative(OP2)
MOV M {QHSD} . OP leabs(OP2)
MOV A OP1<ADDRESS_OP2
MOV A OPI OP l«(address specified by OD1
in the instruction at OP2)

MOV A OP2 » OP l«(address specified by OD2

| in the instruction at OP2)
MOV A REAL OPlereal_addresscADDRESS_OP2)

EXCH {[QHS.D} OP160OP2

3.74.8

3.'I7.4.Bl Stack Manipulation

Processor Architecture

49

XoP

0D1

002

8

11 12

23 24

35

The stack manipulation instructions conditionally hard error trap on the result of the comparison
of the stack pointer with the stack limit register. The trap location is a fixed location in virtual

space, STACK_MANIP.

The "PUSH {UP,DOWN} TRAP" instructions push an operand of integer length (Q, H, S, or D)
onto a stack and trap conditionally dependmg upon the outcome of a comparison. Stacks may
"PUSH UP" pushes onto an upward-growing stack and -
"PUSH DOWN" pushes onto a downward-growing stack. One operand, call it OP, is assumed to
be a single-word stack pointer, and the stack limit is NEXT_OP. The length of the stack entry is

grow either upward or downward;

_specified by a term in the opcode string.

Processor Architecture 3.748

50
Opcode String
ADD TRAP

- SUB TRAP
PUSH UP TRAP {QHS,D}
PUSH DOWN TRAP {QHS,D}
POP UP {Q,H,S,D}
POP DOWN {Q,H,3,D}

Operation

if (OP1+OP2) > NEXT_OPI1

then hard_error(
STACK_ADJUST,ADDRESS_OPI1)

else OP1«OP1 + OP2

if (OP1-OP2) <« NEXT_OPI
then hard_error(

STACK_ADJUST ,ADDRESS_OP1)
else OP1«OP1 - OP2

PUSH UP and TRAP if overflow

if (OP1+{1,2,34})) > NEXT_OPI
then hard_error(
STACK_ADJUST,ADDRESS_OP1I)
else begin '
M{OP1]}-OP2
OP1«OP1+{1,2,3,4}
end

PUSH DOWN and TRAP if overflow

if (OP1-{1,2,34}) < NEXT_OP1
then hard _error(‘
STACK_ADJUST,ADDRESS_OP1)
else begin
MIOP1}-OP2
OPI<OPI1-{1,2,3,4}
end

POP an UPward stack.

OP2<0OP2-{1,2,34}
OP1<M[OP2]

POP a DOWNward stack.

© OP2-OP2+{1,2,34]

OP1M[OP2]

3.749 Processor Architecture 51
3.7.4.9 Subroutine Linkage

The subroutine linkage mechanism is designed to allow the efficient implementation of high-level
block structured languages such as PASCAL; it explicitly implements call-by-value and call-by-
reference.

In a block structured language, a display is often used to implement references to upper levels in
the stack. The active display is maintained in the R registers; it consists of a pointer to the stack
frame of each procedure which is at a lower lexical level than the currently active procedure.
When a procedure at a lower lexical level returns, the display registers above the level of the
called procedure must be restored to their state at the time of the call. For example, consider a
procedure CALLER on lexical level 3 which calls a procedure CALLED on lexical level 1.
CALLER first saves the old display register, DISPLAY[1], allocates a new frame on the stack,
then sets DISPLAY[I] to point to the new frame. During the execution of CALLED,
DISPLAY(2] and above are not needed, and therefore can be used for any other purpose,
providing they are restored before CALLED exits. The per-procedure-call overhead in
maintaining the display is then one memory write to save the old display register, one register
write to set up the new display register, and one memory read to restore the old display register.
During the execution of a procedure on lexical level I, I registers are required to hold its display;
all registers above the level of the current display register can be used for local variables,
providing they are restored on return.

In the LLL Filter, an efficient mechanism is provided for passing parameters to subroutines
through the registers, rather than on the stack. The parameter instruction (PAR) is used to save
a register on the stack, and to place a parameter in that register. This operation represents
essentially the same overhead as pushing parameters on the stack, but has the advantage that it
leaves the parameters in the registers for efficiency. '

To understand the (PAR) instruction, it is first necessary to understand the format of the current
stack frame. Before a procedure can be called, storage on the current stack frame must be
allocated for the callee’s parameters, the old stack frame pointer, and the return program counter,
as shown in Figure 3.74.9-1." It will be convenient for the caller to allocate this extra
space on its stack frame when it is first invoked, allowing enough room for the largest routine call
which it will make. The allocation will thus be made far enough in advance so that pipeline
interlocks normally will not occur (indexing off of a recently altered register will cause the pipeline
to interlock). Furthermore, allocation in advance will save the expense of performing multiple
allocations and deallocations, one pair for each call.

Figure 3.74.9-2 shows an example procedure call which passes three parameters A, B,
and C, where A and C are call by value, and B is call by reference. Figure 3.7.4.9-3
shows the called procedure (CALLED), which uses two local registers and allocates 10 words on its
stack. NEW_SF is the stack frame register for CALLED. The operations preformed by the
subroutine linkage instructions are shown as comments in the example. The exact definition of
the instructions is given in the sections which follow. '

If the contents of a register used to pass a parameter are known to useless after the subroutine
call, then the parameter can be MOVed to the register, and the register need not be restored,
saving the overhead of one save and one restore.

This parameter passing method requires a register for each parameter passed to a procedure.
One possible code-generation technique is to assign 8 registers to be used for passing parameters;

52 Processor Architecture 3.74.9

if a procedure has more than 8 parameters, it will push the rest of the parameters onto the stack.
Furthermore, it will be efficient to have two types of temporary registers for use in procedures; the
first type will be used to hold local variables, which are saved and restored when a procedure is
entered and exited, and the other type will never be saved, but will be used for holding temporary
results and calling bottom-level procedures (which call no other procedures).

3.74.9

SF:

SP-28:
SP-16:
SP-12:
85-8:

. SP-4

SP:

Processor Architecture

CURRENT FRAME VARIABLES

SAVE PARAMETER N REGISTER

SAVE PARAMETER 3 REGISTER

SAVE PARAMETER 2 REGISTER

SAVE PARAMETER 1 REGISTER

OLD STACK FRAME POINTER(SF)

RETURN PROGRAM COUNTER (PC)

FIRST FREE WORD ON STACK

Figure 3.74.9-1 -
Current Stack Frame

53

54

PAR 1
PAR A 2
‘PAR 3

JUMP SUB

MOV 3

CALLED: ALLOC 2

Processor Architecture

P_REG,A
P_REG-1,B
P_REG-2,C

NEW_SF,CALLED

P_REG-2,-20(SP)

Figure 3.74.9-2

Example Procedure Call

NEW_SF+1,#40

I "ROUTINE BODY"

RETURN SUB 2

NEW_SF+1,NEW_SF

Figure 3.7.4.9-3

Example of Called Procedure

3.7.4.9

IM[SP-12]«R[P_REG]
!R[P_REG]~M[A]

'M[SP-16]«R[P_REG-1]
'R[P_REG-1]+B

IM[SP-20 J«R[P_REG-2]
'R[P_REG-2]«M[C]

!M[SP-8 J«R[NEW_SF]
IM[SP-4)-PC+4
IR[NEW_SF J«SP
!PC~CALLED

IR[P_REG-2 J-M[R[SP]-20]
IR[P_REG-1]}~M[R[SP]-16]
'R[P_REG]J-M[R[SP]-12]

IM[SPJ-R[NEW_SF+1]
IM[SP+4 J-R[NEW_SF+2]
1 SP+S5P+40

IR[NEW_SF+1]«M[RENEW_SF]]
!R[NEW_SF+2]*M[R[NEW_SF]+4]

'PCeM[R[INEW_SF]-4]
| SP<R[NEW_SF]
'R[NEW_SF J~M[R[NEW_SF]-8]

3.74.9.1 ' ' ‘, Processor Architecture 55

3.7.4.9.1 Jump to Subroutine

Jop PR 001 J

9 18 11 12 23 24 35

OP1 is the stack frame register. The JUMP SUB instruction saves on the stack the return
program counter and the old stack frame register (OP1), and sets the new stack frame register
(OP1) equal to the stack pointer.

Opcode String Operation
JUMP SUB JUMP to SUBroutine

M([SP-8)-OPI
M[SP-4)-PC_NEXT_INSTR

OPlSP
. _ PC<JUMPDEST
3.7.4.9.2 Subroutine Context Switching
XOP 001 002
8 1112 23 24 35

PAR saves the value of a register (OP1) in one of eight parameter-save areas on the current
stack frame, and loads OP1 with a value parameter, OP2. PAR A is identical except it loads
OP1 with the address of OP2.

ALLOCATE is used by the called procedure to allocate OP2 words on the stack, and to save 1 to
8 registers (sequentially, starting with OP1) at the beginning of the new stack frame.

RETURN SUB restores 1 to 8 registers (sequentially, starting with OP1) from the beginning of
the current stack frame, restores the PC from the previous stack frame, sets the SP to the value of
the current stack frame pointer (OP2), and restores the previous stack frame pointer from the
previous stack frame.

56 A Processor Architecture B 3.7.4.92

Opcode String Qgeration

PAR {172, - 48} subroutine PARameter
M[SP-8-{12, .. 8}x4]-OPI
OP1<OP2

PAR A {12, .. 8} subroutine PARameter Address

MISP-8-{1,2, ... 8}x4}-OP1
OP1<ADDRESS_OP2

ALLOCATE {1.2, .. .8} ALLOCATE stack and save registers

if SP > (SL+OP2x4)
then hard_error(
) STACK_ADJUST,SP_IDx4)
else begin
for I«1 step 1 until {1,2, ... ,8}
do M[SP+Ix4-4}«
M[ADDRESS_OP 1+Ix4-4)

SPSP+OP2
end :

RETURN SUB {0,12,8} RETURN from SUBroutine an
restore registers. :

for I«1 step 1 until {0,1,2, ... ,8}
do M[ADDRESS_OP | +Ix4-4]«
MIOP2+Ix4-4]

PCM[OP2-4)
SP<OP2
OP2M[OP2-8]

3.74.10 ' ' * Processor Architecture 57
3.7.4.10 Traps and Interrupts

This section describes trap instructions, soft-error traps, hard-error traps, and interrupts.

Traps and interrupts use trap vectors. A trap vector includes a new PC and possibly a status
word; those values are loaded into the processor during a trap after the previous state of the
machine has been saved.

The trap instructions allow trapping within the current mod2 (TRAP SELF), or trapping to-the
executive (TRAP EXEC). TRAP SELF does not save the status register, but places the addresses
of OP1 and OP?2 into R[30] and R{31] (after saving them); it is intended to be used as a two-
parameter subroutine call. TRAP EXEC saves the status register and gets a new status register
from the trap vector; it also places the addresses of OP1 and OP2 in R[30] and RI31), but
without saving those registers. TRAP EXEC is intended to be used to implement monitor calls;
the exccutive will reserve R[30] and R[31] to receive parameters. The TRAP opcodes define the
trap vector addresses; each instruction type has 64 different opcodes, each of which traps to a
unique trap vector. The TRAP SELF trap vectors are contiguous in both the user and executive
virtual address spaces, starting at address TRAP_SELF_ADR, and the TRAP EXEC trap vectors
are contiguous in the executive address space starting at address TRAP_EXEC_ADR (they do
not exist in the user address space). Both TRAP USER and TRAP EXEC save the PC of the
next instruction (some types of traps save the PC of the current instruction); a return will thus not
re-exectite the trap instruction.

Some types of instruction execution errors (for example, integer overflow) will cause a soft error
trap. A soft error traps to a fixed trap vector address (which depends upon the identity of the
error) in the current address space. A soft error trap saves the USER_STATUS_REGISTER
(and sets a new USER_STATUS_REGISTER from the trap vector), if the trap occurs in user
mode, but saves the STATUS REGISTER (and sets a new STATUS_REGISTER from the trap
vector), if the trap occurs in executive mode. The soft error trap routine also saves on the stack
the PC of the next instruction and one or more parameters, the nature of which is specific to the
type of error. Retusnis from soft error traps will usually be to the next instruction, since most
instructions with soft errors complete execution before trapping. Cases in which the trapping
instruction needs to be re-executed are handled by passing the PG of the trapping instruction as a
parameter.

Other types of instruction execution errors (for example, writing a read-only page) will cause a
hard error trap. A hard error traps to a fixed trap vector address (which depends upon the
identity of the error) in the executive address space. Hard errors occurring in the executive trap
to different locations than hard errors occurring.in the user. A hard error trap saves one or more
parameters, the PC of the trapping instruction, and the STATUS_REG; the save area is simply
the stack defined by the new STATUS_REG, which is obtained from the trap vector. The
STATUS_REG value in the trap vector will also set the processor into executive mode. As with
-soft errors, the nature and number of the parameters saved is specific to the type of error. Most
hard errors cause abortion of an instruction before any results are written; those instructions can
be re-executed.

Two special hard errors may occur during traps or interrupts: page fault, and stack overflow.
These errors trap again to special hard error trap vectors, passing parameters which allow the
proper exccution and return of trap which encountered the error. The special hard error handler
PAGE FAULT_IN_TRAP must not encounter a page fault error, and the hard error handler
SP_OVFL must not encounter a stack overflow error.

HR Processor Architecture 3.7.4.10

A interrupt is similar to a hard crvor, but no parameter is saved. An interrupt is initiated when
one of the four interrupt lines is asserted; if the priority of the interrupt is higher than PRIO,
then the dmterrupt s accepted and the processor, under micro-code control, finds an interrupt
vector address (JNT. VECTOR) in main memory (where it was stored by the interrupting device).
The processor at the same time rescts the wterrupt bit which caused the interrupt line tu e
asserted. Interrupts are tested immediately before execution of an instruction; at that time PC is
the address of the next instruction to be executed.

Three return instructions handle all returns from traps or interrupts; RETURN REGS,
RETURN USER STATUS, and RETURN FULL STATUS restore only registers, only the user
status, and the foll status, respectively,. RETURN REGS handles returns from TRAP SELF,
RETURN USER STATUS handles returns from soft error trap: and RETURN FULL
STATUS handles returns from hard error traps, TRAP EXEG, and interrupts. Both RIETURN |
USER STATUS and RETURN FULL STATUS allow OP1 to specify the number of locations
to be popped off «.f the stack.

3.74.10

USER SPACE

ADDRESS 132:

VECTORS FOR
SOFT ERRORS
FROM USER

TRAP_SELF_ADR:

VECTORS FOR
"TRAP SELF"-
FROM USER

Processor Architecture

Figure 3.7.4.10-1

EXEC SPACE

ADDRESS 132:

VECTORS FOR
SOFT ERRORS
FROM EXEC

TRAP_SELF_ADR:

VECTORS FOR
"TRAP SELF"
FROM EXEC

TRAP_EXEC_ADR:

VECTORS FOR

"TRAP EXEC"
FROM USER

{OR EXEC)

VECTORS FOR
HARD ERRORS
FROM
USER/EXEC

INTERRUPT
VECTORS

User and Executive Address Spaces

| 60 Processor Architecture 3.7.4.10

Vector for TRAP SELF from user:

HANDLER ADDRESS

Vector' for TRAP SELF from executive:

" HANDLER ADDRESS

Vector for soft error from user:

HANDLER ADDRESS

NEW USER_STATUS_REG

Vector for soft error from executive :

HANDLER ADDRESS

NEW STATUS_REG

Yector for hard error from user or executive:

HANDLER ADDRESS FOR USER HARD ERROR

) NEW STATUS_REG FOR USER HARD ERROR

HANDLER ADDRESS FOR EXEC HARD ERROR

NEW STATUS_REG FOR EXEC HARD ERROR

Vector for interrupt:

HANDLER ADBDRESS

NEW STATUS_REG

Figure 3.7.4.10-2
Trap Vector Formats

3.74.10

TRAP TYPE

TRAP SELF

TRAP EXEC

USER SOFT ERROR

EXEC SOFT ERROR

HARD ERROR

INTERRUPT

Processor Architecture

SAVE AREA FORMAT

PC_NEXT_INSTR

R130]

RI31)

PC_NEXT_INSTR

STATUS_REG

PARAMETER(S)

PC_NEXT_INSTR

USER_STATUS_REG

PARAMETER (S)

PC_NEXT_INSTR

STATUS_REG

PARAMETER (S)

PC

STATUS_REG

PC

| STATUS_REG

Figure 3.7.4.10-3

- Save Area Formats

61

RETURN TYPE

—————————————

RETURN REGS

RETURN FULL STATUS

RETURN USER STATUS

RETURN FULL STATUS

RETURNAFULL STATUS

RETURN FULL STATUS

62

Trap Address

INT OVFL
ZERO _DIVIDE
LIST_UNDFL
FLOAT_UNDFL
FLOAT_OVFL
POST_OVFL
PRE_OVFL

Trap Address
TRACE

Processor Architecture

Error Condition .

integer overflow

divide by zero

list underflow

floating underflow

floating overflow
postnormalization overflow
prenormalization overflow

Figure 3.7.4.10-4
Soft Error Trap Addresses

Error Condition

trace trap

PAGE FAULT_IN_TRAP page fault during trap

SP.OVFL
PAGE_FAULT
STACK_ADJUST
EXECUTE.USER
JUMP_USER
REF.EXEC

STATUS. ACCESS
ILLEGAL.INSTR
NOT.INSTRUCTION
NOT_DATA
WRITE_ONLY
READ_ONLY
BOUNDARY_ERROR

SP overflow in trap

page fault

stack overflow

execute to user space from exec
jump to user space from exec
reference to exec space from user
accessing processor status by user
illegal instruction

page at PC is not instruction type
operand page is not data type
reading a write-only page
writing a read-only page
data/instruction boundary error

Figure 3.7.4.10-5
Hard Error Trap Addresses

3.7.4.10

Parameters

PC
PC
PC
PC
PC
PC
PC

Parameters

PC

page address
trap address
trap parameter
trap address
page address
stack register adr
PC

PC

PC

PC

PC

PC

PC

PC

PC

PC

3.74.10.1

3.7.4.10.1 Trap Instructions

Processor Architecture ' . 63

XOP 001 © o2
%] 11 12 23 24 35
Opcode String Operation
TRAP SELF {0,1,2, ... 63} MI[SPJePC_NEXT_INSTR
M[SP+}4]4~R[30]
“M{SP+8J<R[31]

TRAP EXEC {0,1,2, .. 63}°

R{30)J-ADDRESS_OPI
R[31JcADDRESS_OP2

SPSP+12
PC-M[TRAP_SELF_ADR+{0,1,2, ... 63}x4]
if SP > SL _

then SP_ovfl(SP_IDx4)

TEMP[1}-STATUS_REG

EXEC_MODE-I

STATUS_REG« :
MITRAP_EXEC_ADR+{0,1,2, .. 63}x8+4]

M[SPJ-PC_NEXT_INSTR

M([SP+4]«TEMP[1]

R[30}-ADDRESS_OPI

R[31J-ADDRESS_OP2

PC«M[TRAP_EXEC_ADR+{0,1,2, ... 63}x8]

SP«SP+8 ’

if SP > SL

then SP_ovfl(SP_IDx4)

64

3.7.4.10.2 Sof t-Error Trap

Opcode String

soft_,_error(TRAP_A DR,PAR)

Preocessor Architecture 3.7.4.10.2

Operation

if page fault

in (M[SPIM[SP+4)M[SP+8))
then page_fault_in_trap(

TRAP_ADR,PAR)

M[SP]-PAR
M[SP+4J-PC_NEXT_INSTR
if EXEC_.MODE
then M[SP+8)-STATUS_REG
else M[SP+8)-USER_STATUS_REG
PC~M[TRAP_ADR]
SP«SP+12 '
if SP > SL :
then. SP_ovfi(SP_IDx4)

3.74.103

3.7.4.10.3 Hard-Error Traps

Opcode String

hard_error(TRAP_ADR,PAR)

page_fault_in_trap(TRAP_ADR,PAR)

Processor Architecture

Og' eration

TEMP[1)«STATUS_REG
if EXEC_.MODE
then begin
STATUS_REG«M[TRAP_ADR+12]
M[SP+4)<PC
PC<MI[TRAP_ADR+8]
end
else begin
EXEC_MODEeI
STATUS_REG<M[TRAP_ADR+4]
M([SP+4)-PC
PC<M[TRAP_ADR]
end
MI[SP]J-PAR
M(SP+8)«TEMP[1]
SPSP+12
if SP > SL
then SP_ovfi(SP_IDx4)

TEMP[1}J«STATUS_REG
if EXEC_MODE
then begin
STATUS_REGMI[
SOFT_ERROR_PAGE_FAULT+12]
M[SP+8)}PC_NEXT_INSTR -
PCeMI[
PAGE_FAULT_IN_TRAP+8)
end '
else begin
EXEC_MODE«I
STATUS_REG<M]
SOFT_ERROR_PAGE_FAULT+4]
MISP+8J«PC_NEXT_INSTR
PCeMI
PAGE_FAULT_IN_TRAP]
end
M[SP]J-TRAP_ADR
M[SP+4)J<PAR
MISP+12)«TEMP[1]
SP«SP+16
if SP > SL
then SP_ovfl(SP_IDx%4)

65

66

‘ Opcode String
SP_ovfl(PAR)

Processor Architecture 3.7.4.10.3

Operation

TEMP[1}-STATUS_REG
if EXEC_.MODE
then begin
STATUS_REG«M[STACK_OVFL+12]
MISP+4)-PC
PC«M[STACK_OVFL+8]
end
else begin
EXEC_MODEe-l
STATUS_REG+M[STACK _OVFL+4]
M([SP+4]«PC
PC«M[STACK_OVFL]
end
M[SP]J-PAR
M{SP+8)-TEMP(1]
SP«SP+12

3.74.104

3.7.4.10.4 Interrupt

Opcode String

interrupt(INT_VECTOR)

Processor Architecture

Operation

TEMP{1]lcSTATUS_REG
EXEC_MODE<]
STATUS_REG<MIINT_VECTOR+4]
M[SP)-PC

M{SP+4}«TEMPI[1]

SP<SP+8

PC(—M[INT_VECTOR]

if SP > SL

then SP_ovf{SP_IDx4)

67

68

Processor Architecture

3’.7.4.10.5 Trap and Interrupt Returns

3.7.4.105

XOP

001

002

Opcode String

RETURN REGS

RETURN FULL STATUS

'RETURN USER STATUS

11 12

23 24 35

Operation

Return and restore registers.
(Return from TRAP SOFT.)

PCe«M[SP-12]
R[30J«M[SP-8)
R[31}M[SP-4]
SP«SP-12

Return and restore full staths.
(Return from interrupt, hard
error, or TRAP EXEC)

PC+<MI[SP-8)
STATUS_REG«M[SP-4]
SP«SP-OPI

Return and restore user status.
(Return from soft error.)

PCeMI[SP-8]
USER_STATUS_REG«MISP-4]
SP<SP-OPI

3.74.11

3.7.4.11 Cache Control

¢

Processor Architecture . 69

XOP

001

0D2

8

11 12

23 24 35

The cache control instructions have been described in Section 3.1. If a very large sweep range is
specified in a cache control instruction, the processor will choose to sweep the entire cache instead
of sweeping each location in the range.

For efficiency reasons, a special instruction is provided to sweep both the instruction cache and
the data cache simuitaneously.

Opcode String
UPDATE DATA

KILL DATA

KILL INSTR

KILL DATA INSTR

Operation

Sweep through the data cache (for OP2
quarter-words), starting at virtual address
OP1, and writing back changed locations.

Same as UPDATE DATA, except that
the words in the cache in the given

" range are also invalidated, so that

future references to them will be made
to memory.

Sweep through the instruction cache
(for OP2 quarter-words), invalidating each
location starting at virtual address OP1.

Same as KILL DATA followed
by KILL INSTR.

70 Processor Architecture 3.74.12

3.7.4.12 Page Map Control

3,7.4.12.1 KILL MAP

XOP 001 002

B 11 12 23 24 35

The page map control instructions have been described ‘in Section 32. KILL MAP deletes a
specific entry from both page maps. KILL MAP EXEC deletes all executive address space entries
in the page map, and KILL MAP USER deletes all user address space entries in the page map.

Opcode String Operation
KILL EXEC MAP Invalidate the entry in the associative

map that corresponds to the executive
virtual address M{OP1].

KILL USER MAP | Invalidate the entry in the associative
map that corresponds to the user
virtual address M[OP1].

KILL ALL EXEC MAP Invalidate all executive address
space entries in the page map.

KILL ALL USER MAP Invalidate all user address
space entries in the page map.

3.7.4.12.2 , Processor Architecture 71

3.7.4.12.2 Writing Segment Base Registers

Jop |pR 001 J

2 19 11 12 23 24 35

These instructions allow writing either segment base register. A jump is included to allow writing
the executive to write its own segment base register (which affects the instruction address space for
the executive). Execution of WRITE EXEC JUMP will cause all executive address space entries
to be deleted from the page map. Execution of WRITE USER JUMP will cause all user address
space entries to be deleted from the page map.

Opcode String Operation

WRITE EXEC JUMP EXEC_SEG _BASE_REG«OPI
PC«JUMPDEST

WRITE USER JUMP - USER_SEG_BASE_REG<OPI

PCeJUMPDEST

72

3.7.4.13 Status Register Control

3.7.4.13.1 Read Status

Processor Architecture 3.74.13

XOP

001

002

8

11 12

23 24 35

The full processor status and the processor ID are accessible only in executive mode.

Gpcode String
READ FULL STATUS

READ USER STATUS

READ PROC ID

3.7.4.13.2 Write Status

Operation
OPI«STATUS_REG

OPI1<USER_STATUS_REG

OPi<PROCESSOR_ID

JOP

PR

001

0

18 11 12

23 24 35

The processor status register is accessible only in executive mode. A jump is provided after the
load so that the executive can load a user’s status register and jump to the user in one instruction.
The M bit cannot be set in the jump destination of these or any other jump instructions.

Opcode String

WRITE FULL STATUS jUMP

'WRITE USER STATUS JUMP

Operation

STATUS REG<OPI
PC«JUMPDEST

USER_STATUS_REG«OPI
PCeJUMPDEST

3.74.14 Processor Architecture 73

3.7.4.14 Synchronization

"3.7.4.14.1 SET INTERRUPT

XoP 001 002

8 T 11,12 23 24 35

Interrupts have been described in Section 34.1. A processor P; may direct an interrupt to
processor P; by setting bit i in Pj's interprocessor interrupt word using a read-modify-write
memory cycle. OP1 and OP2 are assumed to be single-word operands.

Opcode String Operation

SET INTERRUPT (using read-modify-write cycle)
.OP1<OPIvOP2

RESET INTERRUPT (using read-modify-write cycle)
OP1+OP 1Anot{OP2)

3.7.4.14.2 Test and Set/Reset

XoP 001 1§74

8 11 12 ' 23 24 35

TEST AND SET and TEST AND RESET allow the setting and resetting of single-word flags
using a read-modify-write memory cycle.

Opcode String Operation .
TEST AND SET | (using read-modify-write cycle)
OP1<OP2
OP2«-1
TEST AND RESET (using read-modify-write cycle)
: OP1<OP2

OP2<0

74 . Processor Architecture 3.7.4.14.3

3.7.4.14.3 Munch RegiSters

sop |skp | oot 002

) 78 1112 23 24 ’ 35

Munch registers have been described in Section 3.4.3. These instructions allow a munch register
to be set if and only if there is no conflict (that is, no other munch register equals OP2). If a
conflict exists, the munch register controller writes a zero into the munch reglster The instruction
definitions assume that OP1 is a munch register.

Opcode String ' Operation

MUNCH SKIP OK ' if no_conflict
then begin
OP1<0P2
PC<PC+SIGNED_SKP
end
else OP 1«0

MUNCH SKIP NOT OK if no_conflict
then OP1<OP2
else begin
PC<PC+SIGNED_SKP
OP1«0
end

3.7.4.14.4 ‘ Processor Architecture : ' 7%

3.7.4.14.4 Hardware Queues

sop | skp 001 002

8 78 1112 23 24 35

This instructions have been described in Section 3.4.4. The definitions assume that QUEUE.X is
a hardware queue at location ADDRESS_X. The processor uses a read-modify-write memory
cycle to both determine whether the queue is full (empty) and to enqueue (dequeue) an entry if
and only if such enqueueing (dequeueing) is possible. Both LIFO and FIFO queues are
provided; they are distinguished by their addresses.

Opcode String Operation
QUEUE SKIP FULL ' (using read-modify-write cycle)
: if not_full

then QUEUE.OP1<OP2
else PC<«PC+SIGNED_SKP

QUEUE SKIP NOT FULL (using read-modify-write cycle)
if not_full
then begin
QUEUE.OP1<OP2
PC«PC+SIGNED_SKP
end

DEQUEUE SKIP EMPTY : (using read-modify-write cycle)
, : if not_empty
then OP«QUEUE.OP2
else PC«PC+SIGNED_SKP

DEQUEUE SKIP NOT EMPTY (using read-modify-write cycle)
' if not_empty
then begin
OP1«QUEUE.OP2
PC<PC+SIGNED_SKP
end

76 Processor Architecture ’ 3.7.4.15

3.7.4.15 Control Store

.

XoP 001 002

8 11 12 23 24 35

When the processor is powered-up, an LSI-11 console machine initializes the control memories in
the processor. The following instructions allow the operating system to alter the control memories.

Opcode String Operation

WRITE ISEQ Word OP1 in the ISEQ control
gets OP2.

WRITE PSEQ Word OP1 in the PSEQ control
gets OP2.

WRITE ESEQ : Word OP1 in the ESEQ control
gets OP2.

WRITE DECODE RAM Word OP1 in the DECODE RAM
gets OP2. .

WRITE DATA CACHE LRU Word OP1 in the DATA CACHE

. LRU DECODE RAM gets OP2.

WRITE INSTR CACHE LRU ' Word OP1 in the INSTR CACHE
LRU DECODE RAM gets OP2.

WRITE DATA ADR TRN LRU Word OP1 in the DATA ADDRESS
TRANSLATION LRU DECODE RAM
gets OP2.

WRITE INSTR ADR TRN LRU _ Word OP1 in the INSTR ADDRESS

TRANSLATION LRU DECODE RAM
gets OP2.

)

3.74.16

3.7.4.16 Miscellaneous

Processor Architecture

XoP

001

002

Opcode String
WAIT

HALT

START

RESET

EXECUTE

AMPUTATE

11 12

23 24 35

Operation

Wait for interrupt.
Stop processor OP 1.

Start processor OP1, if
halted, else does nothing.

Reset 1/O devices and switch. -

Execute OP1 in the address space
of OPL

Lock processor OP1 out of the switch.

77

78 Processor Architecture 3.7.5

3.7.5 Sample Programs

This section presents sample programs which for comparison are coded in several assembly
languages, including assembly language for the LLL Filter.

The purpose of this section is to indicate the density of compiled code for the LLL Filter, to
suggest the relative execution speed of the LLL Filter compared with existing machines, and to
clarify the LLL Filter instruction set.

3.7.5.1 Assembly Language Specification

This section presents a brief, informal description of the assembly language which is used for the
‘sample programs included in this report.

An assembly language statement may have five main fields, as follows:

LABEL OPCODE GOTO OPERANDS COMMENTS

The LABEL and COMMENTS fields are self-explanatory. The remaining fields are described
in the following sections.

3.7.5.1.1 OPCODE Field

The OPCODE field contains an opcode string, as described in Section 3.7.4, or an abbreviated
form of the opcode string. An opcode string may be abbreviated by the deletion of certain terms;
the assembler fills in default values for these terms. The following list shows the assembler
defaults for opcode string terms:

Term Assembler Defauit
{S,D} S
{FR,CR SR} SR

For example, the assembler expands the opcode string "FDIV" into "FDIV SR S, meaning
"single-word floating divide with stable rounding.” -
3.7.5.1.2 GOTO Field

The GOTO field is used for any instruction which includes a skip or a jump destination. The
GOTO field contains the name of the destination instruction. '

3.7.5.1.3 OPERANDS Field
The OPERANDS field specifies the operands of the instruction. The operand names RTA,

RTB, PC, SP, and SL are reserved words which indicate special R registers, as shown in Section
3.7.2. The notation RX means R[X]. ‘

3.7.5.1.3 Processor Architecture 79

Operands are written in the order shown in Table 3.7.3.2-1. In instructions having two operands,
the order of the operands is OP, OP2. In instructions having three operands, the operands are

written "DEST,OP1,0P2."

80

Processor Architecture

3.7.5.2 Use of the T Field

3.7.6.2

The main use of the T format instructions is in the evaluation of expressions. The following
examples compare LLL Filter code and PDP-10 code in the evaluation of expressions.

Expression
. A-A+B

'AeB+C

A«B+C-D

A«AxB+CxD

A«Bx(C(J)-D(K))

LLL Filter

ADD A,B

ADD RTA,B,C
MOV A,RTA

RTA,B,C
SUB A,RTA,D

MULT RTA,A,B
MULT RTB,C,D
ADD A,RTA,RTB

SUB RTA,C(J),D(K)
MULT A,RTA,B

A-B(I+J)*xC(K+L)+D(M+N)*E(L+P)

ADD RTA,I,J

ADD RTB,K,L

MULT RTA,B(RTA),C(RTB)
MOV R1,RTA

ADD RTA,M,N

ADD RTB,L,P

MULT RTA,D(RTA),E(RTB)
ADD A,RTA,R1

Words

1

12

PDP-10

MOVE
ADDM

MOVE
ADD
MOVEM

MOVE
ADD
SUB
MOVEM

MOVE
MULT
MOVE
MULT
ADD
MOVEM

MOVE
MOVE
MOVE
SUB
MULT
MOVEM

MOVE
ADD
MOVE
ADD
MOVE
MULT
MOVE
ADD
MOVE
ADD
MOVE
MULT
ADD
MOVEM

Words

2

RO,B
RG,C
RO,D
RG,A

RO,A
RO,B
R1,C
R1,D
RO,R1
RO,A

RO,J
R1,K
R2,C(RO)
RZ,D(R1)
R2,B
RZ,A

14

RO,1
RO,J
R1,K
R1,L
RZ,B(R0)
R2,C(R1)
RO, M
RO,N
R1,L
R1,P
R3,D(RO)
R3,E(R1)
R2,R3
RZ2,A

3.7.5.2 . Processor Architecture " 81

This last example might séem a little unlikely, but it was given because except for the statement
"A«B+C" it is the only expression that can not be evaluated with no "MOV" instructions,
because each of the four subscripts need the RT registers, and each of the products need the RT
registers for their results. If even one of the four subscripts takes one more or one less operation,
then the expression can be evaluated with no "MOV" instructions. :

- 8.7.5.3 Compiled Treesort Comparisons

This section compares compilations of the Treesort algorithm. The first compilation shown is the
output of a hypothetical simple compiler compiling BLISS for the LLL:- Filter. The second
compilation is the output of the BLISS-10 compiler compiling BLISS for the PDP-10. The third
compilation is the output of the BLISS-11 compiler compiling BLISS for the PDP-11. Each of
the first three compilations is shown for two cases, called case NO REGS and case REGS, which:
correspond to the cases in which the variables T, J, K, and N are declared to be OWN variables
and REGISTER variables, respectively. The last compilation is the output of the FORTRAN-H
compiler compiling a FORTRAN version of the same algorithm for the IBM-370/168. This
compilation was performed using the full optimization capability of FORTRAN-H (OPT=2).

The following table summarizes the important static parameters of the compilations.

#_INSTRUCTIONS # BITS DATA CACHE CYCLES
LLL Filter (NO REGS) 33 1584 81
LLL Filter (REGS) 33 1584 19
BLISS-10 (NO REGS) 63 2268 ' 60
BLISS-10 (REGS) - | 42 1512 19
'BLISS-11 (NO REGS) 63 1376 63
'BLISS-11 (REGS) 58 1216 31

FORTRAN-H 370/168 84 2432 51

 END;

82 Processor Architecture ' 3.7.5.3.1
3.7.5.3.1 BLISS Treesort Algorithm W A o

)\’/&/ f B .
This section presents the Treesort algorithm which is compiled for several machines in the
following sections. The listing shown declares T,], K, and N to be registers.

MODULE=
BEGIN

REGISTER T,J,K,N;
LABEL L1,L2;
OWN A[61];

INCR I FROM 2 TO .N DO BEGIN
Ke.1;
Je.1;
T«.A[.1];
L1: DO BEGIN
Je.J/2;
IF .T LEQ .A[.J] THEN LEAVE L1};
Al .K]J«.A[.J];
Ke.J;
END UNTIL .J EQL 1;
Al .K])+.T;

DECR I FROM .N-1 TO 1 DO BEGIN
Te A[. I+1]; '
A[.I+1]J«.A[1];
Kel;
J«2;
L2: WHILE .J LEQ .I DO BEGIN
IF .J LSS .I THEN BEGIN .
IF (.A[.J+1] GTR .A[.J]) THEN J«.J+];
END;
IF .A{.J] GTR .T THEN BEGIN
Al . KJ-.A[.J];
Ke.J;
Je22.J;
END ELSE LEAVE LZ2;
END;
Al .K3}«.T;
END;

END ELUDOM;

3.7.5.3.2

Processor Architecture

3.7.5.3.2 LLL Filter Compilation

83

This section presents the output of a hypothetical non-optimizing compiler compiling the above
BLISS program for the LLL Filter. Along with each assembly language instruction is shown the
number of data cache cycles required for the instruction for each of case NO REGS and case
REGS, and the length of the instruction in words.

The assembly language output is identical for case NO REGS and case REGS, therefore only one
listing is shown.

L1

L2

L3

L4
L5

L6
L7

L8

L10
L11

MoV

SKIP LE L1
JUNP L4
Mov

MoV

Mov

SHIFT RIGHT A
SKIP LE L3
MoV

MoV

SKIP NE L2
Mov

INC SKIP G L4
JUump L1

DEC
JUMP LE O L11
Mov
MOV
MOV
Mov
SKIP LE L7
JUMP L10

SKIP GE L8 .

SKIP LE L8
ADD .
SKIP LE L10
MOV

MOV

SHIFT LEFT A
SKIP G L10
JUMP L7
MoV

INC JUMP G O LS

=ty
= W
o

. G ot
o LN ~—

(J)

—2» G PN P - G- PN
- - . - —— - - -
2RI C PN D
~— et o s
-

I,N

I

T,A+1(1)
A+1(1),A+]
K,#1

J,#2

J, 1

J, 1
A+1(J),A(J)
J,#1

A(J),T
A(K),A(J)
K,J

J#1
Ji1

A(K),T
I

NO REGS
DATA
CACHE
CYCLES

NBRONNWDIWRIWN ODN NN DB W QW WONWNbBWWONN

TOTAL: 81

REGS
#DATA
CACHE
CYCLES

ONOOCOOWHRONODOSOOOWOO OCONOOWrFOQMFEFOOOOO

—
(=]

36-BIT
INSTR
WORDS

bt et (N bt bt N3 (N3 Ft [N\3 Pt et pmd d ot

bt (N3 oot bt et ot (N3 [N bt CA) et bt i fomt ot (N3 [N\J bt et

F
oo

84

3.7.5.3.3 BLISS-10 Compilation for PDP-10

Processor Architecture

3.7.5.3.3

Following is the code generated by the BLISS-10 compiler compiling the above BLISS program
for the PDP-10 for the case in which T, J, K, and N are not declared to be registers..

~ MOVEI
MOVEM
L1 CAMLE
JRST
MOVEM
MOVEM
MOVE
MOVEM
L2 MOVE
ASH
MOVEM
MOVE
CAMLE
JRST
MOVE
MOVE
MOVE
" MOVEM
MOVEM
CAIE
JRST

L3 MOVE

MOVE
MOVEM
AOJA

17,2
17,1
17,N

L4

L5

L6

L7

L8 -

L9

MOVE
S0J
MOVE
JUMPLE
MOVE
MOVEM
MOVE
MOVEM
MOVEI
MOVEM
MOVEI
MOVEM
CAMGE
JRST
CAMNG
JRST
MOVE
MOVE
MOVE
CAML
JRST
AOJ
MOVEM
MOVE
MOVE
CAML
JRST
MOVE
MOVE
MOVEM
MOVEM
ASH
MOVEM
JRST
MOVE
MOVE
MOVEM
50J6

10,A+1
10,A+1(17)
12,1

12,K

11,2

11,J

17,4

3.7.5.3.3 Processor Architecture 85

Following is the code generated by the BLISS-10 compiler compiling the above BLISS program
~ for the PDP-10 for the case in which T, J, K, and N are declared to be registers.

MOVEI 13,2 L2 MOVE 13,14
L1 CAMLE 13,14 soJ . 13,0

JRST L2 JUMPLE 13,L5

MOVE 15,13 L6 MOVE 17,A+1(13)

MOVE 16,13 . MOVE 6,A+] :

MOVE 17,A(13) MOVEM 6,A+1(13)
L3 ASH 16,-1 MOVEI 15,1

CAMG 17,A(16) : MOVEI 16,2

JRST L4 L7 CAMLE 16,13

MOVE 4,A(16) JRST L10

MOVEM 4,A(15) CANML 16,13

MOVE 15,16 JRST L1l

CAIE 16,1 : . MOVE 11,A(16)

JRST L3 CAMGE 11,A+1(16)
L4 MOVEM 17,A(15) AO0J 16,0

AOGJA 13,L1 © L11 CAML 17,A(16)

JRST L10

MOVE 12,A(16)
MOVEM 12,A(15)

- MOVE 15,16
MOVE 1,16
ASH 1,1

" MOVE 16,1
JRST L7

o, ' L10 MOVEM 17,A(15)
_ 50JG 13,L6

86 . Processor Architecture _ 3.7.5.34

3.7.5.3.4 BLISS-11 Compilation for PDP-11

Following is the code generated by the BLISS-11 compiler compiling the above BLISS program
for the PDP-11 for the case in which T, J, K, and N are not declared to be registers.

MOV #T,R$0 ' MoV @#N,R$5

MOV #J,R$3 ' : DEC R$5
MOV #K,R$1 MOV R$5,R$2 :
MOV #2,-(SP) BR L313 i
BR L$6 L$12: MoV R$2,R$5
L$5: MOV @SP,@R31 ASL R$5
Mov @Sp,GR33 MoV A+2(R$5),CR$0
MoV @SP,R$5 MoV @#A+2,A+2(R35)
ASL R$5 MoV #1,6R31
MOV A(R35), RS0 MoV #2,6R$3
L$7: ASR @R33 : L$14: MoV @R$3,R$5
Mov OR33,R82 CMP R$5,R$2
Mov R$2,R$5 BGT L2
ASL R$5 BGE L$18
CMP A(R$5),@R$0 Mov R$5,R$4
BGE L1 ASL R$4
Mov @R$1,R$4 ASL R$5
ASL R$4 : CMP A+2(R$4),A(RS5)
MoV A(R$5),A(R$4) BLE L818
MoV R$2,@RS$1 INC @R$3
CMP R$2,#1 L$18: MOV @R$3,R$5
' BNE L$7 ASL R$5
Ll: Mov GR$1,R54 , cMp A(R$5),@R$0
ASL R34 ‘ BLE L2
MOV @R$0,A(RS4) MOV - GRS1,R$4
INC @sp ASL =~ R34
L$6: CMP ~ ©@SP,@#N - MOV A(R$5),A(R$4)
BLE LS5 Mov @R$3,0RS$1
MOV R$5,8R$3
BR L$14
LZ: MoV @R$1,R$4
ASL R$4
MoV @R$0,A(RS4)
DEC R$2

L$13: BGT Lsi2

3.7.5.3.4 Processor Architecture : _ 87

Following is-the code generated by the BLISS-11 compiler compiling the above BLISS program
for the PDP-11 for the case in which T,], K, and N are declared to be registers.

Mov #2,-(SP) ' DEC Rb2

BR L$6 MOV R$2,0SP
L$5: - MOV @SP,R$3 BR L$13
MoV R$3,R$4 L$12: Mov @sP,R$2
MoV R$3,R$1 _ ASL R$2
ASL R$1 Mov A+2(R$2),R$5
MOV A(RS$1),R$5 Mov @FA+2,A+2(RS2)
L$7: ASR R$4 Mov #1,R$3
MOV R$4,R$1 : MOV #2,R$4
ASL . R8I L$14: CHMP R$4,@SP
CMP R$5,A(RS1) BGT L2
. BLE L1 BGE L$18
. Mov R$3,R$0 MoV R$4,R$1
ASL R$0 , ASL R$1
MOV A(R$1),A(R$0) MoV R$4,R$2
MoV R$4,R$3 ASL R$2
CMP R$4,#1 CMP A+2(R51),A(RS2)
BNE L$7 , BLE -~ L$18
L1: MoV R$3,R$1 INC R$4
ASL R$1 , L$18: MOV R$4,R$2
Mov R$5,A(RS1) ASL R$2
INC esp ' CMP A(RS2),R$5
L$6: CMP @sp,R$2 BLE L2
BLE L$5 MoV R$3,R$1
ASL R$1

MoV A(R$2),A(RS1)
Mov R$4,R$3
Hov R$2,R$4

BR L$14

L2: MoV R$3,R$0
ASL R$0
Mov R$5,A(RS0)
DEC @sp

L$13: BGT Ls12

88 Processor Architecture ' 3.7.5.3.5

3.7.5.3.5 FORTRAN-H Compilation for IBM-370/168

Following is the code generated by the FORTRAN-H compiler complhng a FORTRAN version
of the above BLISS program for the IBM-370/168 with full optimization enabled.

cl DC XL4'1' 13 L 9,N
c2 DC XL4'2" SR 9,7
c4 DC XLa'4 BC 12,180
c8 DC XL4'8" L4 LR 5,9
- SLL 5,2
USING RI3 L 6,A+4(5)
L 3,A+4
L 7,C1 : ST 3,A+4(5)
L 0,C8 LR 3,7
ST+ 0,Q01 ST 7,K
L 9,C2 . LR 8,3
L 10,C4 \ L 11,€2
L1 CR 9,11 L50 CR 11,9
: 'BC 2,13 , BC 12,L5
LR 2,9 | , ST 8,k
ST 9,K | BC 15,140
ST 9,J : L5 R 11,9
L 14,Q01 BC 10,L70
L 6,A(14) L6 LR 3,11
LR 8,2 SLL 3,2
L 10,C2 L 2,A+4(3)
L20 L 2,J C 2,A(3)
SRDA 2,32 BC 12,L70
DR 2,10 L7 AR 11,7
ST - 3,d L70 LR 3,11
LR 5,3 - ~ SLL 3,2
SLL 5,2 L 10,A(3)
L 11,A(5) © (R 10,6
CR 6,11 BC 3,L8
BC 3,L2 ST 8,k
ST 8,K BC 15,L40
BC 15,L30 18 IR 3,8
L2 LR 5,8 SLL 3,2
SLL 5,2 ST 10,A(3)
ST 11,A(5) LR 8,11
LR 8,3 SLL 11,1
CR 3,7 BC 15,L50
BC 7,120 L40 L 2,k
ST 8,K SLL 2,2
130 L 11,N ST 6,A(2)
L 10,C4 SR 9,7
L 2,k BC 2,14
SLL 2,2 L80 DC OH
. ST 6,A(2)
L 0,Q01
AR 0,10
ST 0,Q01
AR 9,7
BC 15,L1

3.7.5.4 Processor Architecture 89

3.7.5.4 Hand-Coded Quicksort Comparisons

This section compares hand-coded versions of a particular rendition of the Quicksort algorithm.
This version of the Quicksort algorithm comes from [Sedgewick 1975] pg. 329.

The following table summarizes the results of these comparisons:

#_ INSTRUCTIONS # BITS
LLL Filter » 53 2916
PDP-10 63 2268

It is instructive to compare the inner loops of the various Quicksort programs, and these are
marked. ' :

It should be noted that the LLL Filter code has not been highly optimized; by using absolute
addresses for arrays, most multiple-word instructions can be reduced to single-word instructions,
and furthermore, constants can be shared, eliminating duplicate versions in line.

90 Processor Architecture 3.7.54.1

3.7.5.4.1 ALGOL-W Quicksort Algorithm

This section presents in ALGOL-W the Quicksort algorithm which is hand-coded inthe
following sections. :

Certain liberties have been taken with the ALGOL-W language. Specifically, "INFINITY" is
assumed to be a reserved word, the operator ™=:" is the exchange operator, and a macro facility is
assumed (eg. "DEFINE N=400;"). ‘

BEGIN DEFINE N=400; DEFINE M=9;

BEGIN INTEGER ARRAY A(0::N+1);
INTEGER ARRAY STACK(0::2#(ENTIER(LN({(N+1)/(M+2))))+1);
INTEGER P,L,R,I,J,V,T;

A(0):=-INFINITY;
A(N+1):=INFINITY;

P:=0; L:=z1; R:=N;
PART: 1:=L; J:=R+1; V:=A(L);
WHILE I<J DO BEGIN

I1:=I41; WHILE A{I)XV DO I:=I+]1;
J:=J-1; WHILE A(J)>V DO J:=J-1;
A(J):=:A(1);
END;

A(l):=:A(J);

A(J):=:A(L);

IF R-J>J-L THEN GO TO RBIG;
IF J-L<{=M THEN GO TO POP;
IF R-J<=M THEN GO TO LEFT;
P:=P+2; '
STACK(P):=L; - .
STACK(P+1):=J-1;

RIGHT: L:=J+1;

" GO TO PART;

' "RBIG: IF R-J<=M THEN GO TO POP;

IF J-L<=M THEN GO TO RIGHT;
P:=P+2;
STACK(P):=J+1;
STACK(P+1):=R;

LEFT: R:=J-1;
GO TO PART;

‘POP: L:=STACK(P);

R:=STACK(P+1);

p:=P-2;

IF P>=0 THEN GO TO PART;

INSERT:FOR 1:=2 UNTIL N DO

BEGIN
V:=A(I); J:=I-1;
WHILE A(J)>V DO BEGIN A(J+1):=A(J); J:=J-1; END;
A(J+1):=V;
END;

END;
END.

3.7.54.2

MoV

Processor Architecture

'8.7.5.4.3 LLL Filter Hand-Coding

+

" A,#-INFIN

MOV A+N+1,#INFIN
MoV P,#0
MOV L,#1
Mov R,#N
PT MOV I,L
¢ INC J,R
MOV V,A(L)
«x%x INNER LOOP FOLLOWS #==#
L1 ADD 1,#1
SKIP L Ll A(I1),V
L2 SuB J,#1
SKIP G L2 A(J),V
EXCH A(J),A(])
SKIP L L1 1,J
xax END OF INNER LOOP ###
EXCH A(J),A(I)
EXCH A(J),A(L)
SUB RTA,R,J
SuB RTB,J,L
SKIP LE L11 RTA,RTB
JUMP - RB
L1l SKIP G L7 RTB,#
. Jump PP
L7 SKIP G L9 RTA,#M

JumMp - LF

L9

RT

RB
L10

-LF

PP

IN

L6

L4

L5

L3

Mov

DEC

ADD

INC
JUMP
SKIP G
JUMp
SKIP LE
INC

MOV
ADD

DEC
JUMP
MOV

MoV

SUB
JUMP GE 0
MoV
SKIP LE
Jump
DEC

MOV
SKIP LE
MOV

SUB
SKIP G
MOV

INC SKIP G
Jump

PT
L10
PP
RT

PT

L6
L3

L5

L3
L6

91

"This section presents a version of the above ALGOL-W program hand coded in LLL Filter -
assembly language. We assume that P, L, R,], J, and V are stored in R registers.

STACK+2(P),L .
STACK+3(P).J
P,#2

L,J

RTA, #M

RTB,#M .
STACK+2(P),J
STACK+3(P),R
P,#2

R,J

L,STACK(P)
R,ggACK+l(P)

O D
I
&N

L e o
e b SN S P

H?>Q>><f—
Wi bt G W bt Gy I ey

&~

92 Processor Architecture 3.7.5.4.3

3.7.5.4.3 PDP-10 Hand-Coding

This section presents a version of the above ALGOL-W program hand coded by John Reiser in
PDP-10 assembly language. We assume that P, L, R, 1, J, and V are stored in registers, and we
call those registers RP, RL, RR, RI, R}, and RV. In addition, we use the names RT 1, RT?2, and
RT3 to refer to distinct temporary registers. :

NINF = -2Zxx35 : PUSH RP,RL
. MOVEI RT1,-2(RJ) - -
MOVE RT1,NINF HRLM - RT1,(RP) :
MOVEM RTI,A’ RIGHT MOVEI RL,(RJ)
MOVMM RTI1,A+N+1 : . JRST PART
MOVEI RP,STACK-1 ' RBIG CAIG RTZ M
MOVEI RL,1 JRST POP
MOVEI RR,N CAIG RT3, M
PART MOVEI RI,(RL) JRST RIGHT
- MOVEI RJ, 1(RR) : : PUSH RP,RJ
MOVE RV,A(RL) HRLM RR, (RP)
LEFT MOVEI RR,(RJ)
#x%x INNER LOOP FOLLOWS #%« JRST PART
POP TLNN RP,-1
L1 CAMLE RV,A+1(RI) JRST INSERT
AOJA RI,L1 HLRZ RR,RL
L2 CAMGE RV,A-1(RJ) ' JRST PART
SOJA -~ RJ,L2 - INSERT MOVEI RI,RN
MOVE RT1,A-1(RJ) SOJLE RI,OUT
EXCH RT1,A+1(RI) TOP MOVE RV,A(RI)
MOVEM RT1,A-1(RJ) ‘ CANMG RV,A+1(RI)
CAILE RJ,2(RI) : JRST - BOT
JRST L1 MOVEI RJ,1(RI)
: CAMLE RV,A+1(RJ)
#x% END OF INNER LOOP #x# AOJA RJ,.-1
MOVSI RT1,A+1(RI)
-MOVE RT1,A-1(RJ) . HRRI RT1,A(RI)
EXCH RT1,A+1(RI) , : BLT RT1,A-1(RJ)
EXCH RT1,A(RL) MOVEM RV,A(RJ)
MOVEM RT1,A-1(RJ) ' - BOT 50JG RI, TOP
MOVEI RTZ2,(RR) ouT

SUBI RT2, (RJ)
MOVEI RT3,(RJ)
SUBI RT3, (RL)
.CAIGE RT3,2(RT2)

JRST RBIG
CAIG RT3, M
JRST ~ POP

CAIG RTZ,M
JRST LEFT

93

4. Implementation

A

4.1 Processing Element
The ma jor features of the processing element implementation are as follows:
- State-of-the-art high-speed ECL logic.

- Triple micro-controllers, two for fetching instructions and operands, and one for
executing instructions.

- An instruction set defined in a writeable control store which can be dynamically
modified to accomodate the special requirements of some codes.

~ Special data paths for the rapid execution of floating-point instructions.

- Hamming-coded main memory to allow the use of cost-effective 4K-~bit and 16K -
bit RAM chips.

The processing element is shown in Figure 22-1. The entire processing element, including control
store, requires approximately 4000 ECL 10K ICs. The processing element cycles in 100 nano-
seconds, with register-to-register and register-to-memory integer adds proceeding in pipeline
mode at 100 nano-seconds per instruction. With stable rounding, floating addition takes 6 cycles,
and floating multiply takes 11 cycles. With truncation, floating addition takes 5 cycles, and floating
multiply takes 10 cycles.

The processing element contains three independent micro-programmed processors, which are
designated the P-sequencer, the I-sequencer, and the E-sequencer. The P-sequencer does the
basic instruction decode which takes care of the different operand types, and register operands.
The I-sequencer calculates memory, indexed, and indirect operands, in addition to controlling
things like cache misses and the interaction with the switch. The E-sequencer executes all of the
basic instructions, once the P and 1 sequencers have fetch the operands, and scheduled the write(s)
for the result(s). Al three of the sequencer’s have writeable control stores, which can be
dynamically changed.

In this discussion “"macro-instruction” ("macro-operation”) will mean the sequence of micro-
instructions executed by the three sequencers-to emulate a user-level instruction.

Drawings in general will be referenced by an abbreviation which is given in all capital letters.
For example the drawing for the instruction box has the abbreviation IBOX.

The drawings are the output of an advanced computer-aided design system; they are a
hierarchical representation of the machine. In general, a single page is the definition of a macro-
body included in a drawing at a higher level; the definition may use macro-bodies which are
defined at a lower level. The name of a macro-body appears inside the body at the call site; it is
also the title of the body definition. Most macro-bpdy definitions are one page, although
multiple-page definitions are allowed. Multiple-page definitions -are indicated by placing a page
number (for example, “1/2") in the title of each drawing of the definition.

Lines in the drawings represent bundles of signals. The notation X<i:j> means the bundle of
signals X<i>, X<i+1>, .., X<j>. The notation X:Y:Z means the bundle of signals (or vectors of

l}

94 | Implementation : 4.1

signals) X, Y, and Z, in that order. Special "merger" bodies are also used to bundle separately
~named signals.

The parameter passing mechanism is similar to that of ALGOL; actual parameters may be passed
to a macro-body where it is used (paramters are bundles of signals) and the body definition may
‘refer to those parameters by their formal names. Global signals will be declared, although no
declarations have yet been made on these drawings. Any macro-body can refer to global signals
which are delared at a higher level.

The definitions of most low-level bodies are not shown in this report, although an appendix
contains some low-level definitions.

4.1.1 IBOX/EBOX Communication

This section describes the signals which connect the IBOX and EBOX. In the logic diagrams, all
signals connecting the IBOX an EBOX are prefixed with ‘the character "X". Times in
parentheses indicate when' the signal is available in the sender’s reference frame.

4.1.1.1 IBOX to EBOX Signals

START ADR<0:11> (T40)
Starting address in the EBOX of the sequence of micro-operations which emulate the current

instruction.

A OP<0:35> (ThO0)
Operand to the EBOX. A OP is normally the operand described by ODI.

B OP<0:35> (T50)
Operand to the EBOX. B OP is normally the operand described by OD2

USE A OP (T50) :
This signal allows the IBOX to wrap the EBOX result around into the A input. If this signal is
not set and the EBOX is reading an operand from the IBOX, then the operand read into the A

input is simply the result of the last EBOX cycle.

USE B OP (T50)
This signal allows the IBOX to wrap the EBOX result around into the B input. If this signal is
not set and the EBOX is reading an operand from the IBOX, then the operand read into the B

input is simply the result of the last EBOX cycle.

BRANCH TAKEN (T50) .
During conditional branch instructions, this signal indicates that the IBOX took the branch.

BRANCH COND<0:2> (T'50)
During conditional branch instructions, these signals indicate the one of eight branch conditions

coded in the instruction.

A OP LOW ADR<0:1> (T50)
The least-significant two bits of the A operand address. These bits are used in quarter-word and

half-word operations.

4.1.1.1 ~ Implementation 95

B OP LOW ADR<0:1> (T50)
T he least-significant two bits of the B operand address These bits are used in quarter-word and

half-word operations.

DEST LOW ADR<0:1> (T50) '
The least-significant two bits of the destination operand address. These bits are used in quarter-
word and half-word operations.

KILL EBOX (T50)
Stop the EBOX unconditionaily.

PAUSE EBOX (T50)
This signal can be tested by the EBOX and if asserted, will cause a soft stop to occur.

4.1.1.2 EBOX to IBOX Signals

USING OPS (T4)
This signal indicates to the IBOX that if the input operands are not ready for the EBOX, then

the EBOX clock should be stopped until the input operands become ready.

OPS TAKEN (T10) .
This signal indicates to the IBOX that the input operands have been loaded into the EBOX and
_therefore the IBOX operand registers can be reloaded.

RESULT DATA <0:35> (T20)
- The result of a sequence of micro-operations.

TRAP (T20)
The instruction in execution has trapped

RESULT (T20)
A result is available on RESULT DATA<0:35>.

DONE (T20)
The EBOX is done with the current sequence of operations and is ready to accept a new starting
address.

INTERRUPT IBOX (T20)
Interrupt the IBOX. Several cycles are wasted in cleaning up the IBOX to prepare for an
IBOX/EBOX dialogue.

WRONG BRANCH (T2I)
The IBOX took the wrong direction on the conditional branch currently in execution.

96 Implementation 4.1:2

4.1.2 Instruction Box

The instruction box (IBOX) controls the fetching of instructions and operands, the interaction
with the crossbar switch to read and write main memory, and all I/O operations.

The IBOX has two caches, one for instructions and one for data, which each hold 4K words.
The main reasons for having two caches is that it doubles the cache bandwidth, and simplifies
the scheduling of cache operations, since the instruction prefetch logic has its own dedicated cache.
A given word of memory can only be in one of the two caches at a time. When ever a miss
occurs in one of the caches, the other cache is checked for that word. If it is found there, then it
is moved from the one cache to the other. In addition, the instruction cache does not have any
modify bits, so if a modified word is moved from the data cache to the instruction cache, then it is
also written back to main memory. ’

The main register stack is 128 words by 36-bits, which contains the three sets of registers for the
user, and a set of temporary registers for use by the IBOX. All of the registers are stored three
. times, which allows three different registers to be read out at the same time. During each micro-
cycle, one register write and three reads may be done.

One of the register stacks exists in the Index Register File macro, and is used for index
operations. The other two are in the Data Cache and Register File macro, which are used for
.reading register operands for instructions.

The Instruction Address Arithmetic, Instruction Address Translation, Instruction Cache, and

Instruction Buffer and Decode macros all have to do with prefetching instructions. The Index

Register File, Data Address Arithmetic, Data Address Translation, and Data Cache and Register

File macros are used for the calculation of operands. Memory Interface allows memory read and

write operations to be done to the switch. One of its more interesting features is that it puts

hamming codes on the data before it goes to the switch, and checks and corrects it when it comes

back. That way, if there is an error introduced any place between the processor and the memory,

it can be corrected if its a single error, and detected if its a double error. The EBOX Operand

Register macro holds the next pair of operands for the EBOX, and the EBOX Interface macro
just specifies the interconnections between the IBOX and the EBOX

IBOX CONTROL

INSTRUCTION . INSTRUCTION
ADORESS ARITHETIC ADORESS TRANSLA TION INSTRUCTION CROE
INSTR VA INSTR WA
INSTR PR INSTR PR INSTR OUT
x INDEX REG x
x INSTRUC TION BUF FER
AOR RADO) u path AND IFCODE
- INSTR OUT
S — : uTAR @
DATA DATA CACHE AND
xm'_:ﬁusm Pro ADORESS TRANSLATION REGISTER FILE
ROORESS ARITHIE TIC INOEX REG - T @
4 DATA INDEX REG) INDEX REG [o PR
" T
R a D wW ow c out 8
u pata LU DIA_E£BOX W DATA |
REMORY -
INTERF ACE
~ OATA FROM - FROM 1< 9: 775
x
Caa 6 _SEL ’
Ta7-60 L -
EI121 1N R
RESAT j_uxm
A4
: RESULY
INA oP A —joP A DATA
EBOX OPERAND
[0
Rm!sTERs INYERFARCE RESWLY
"
) €
. INB or B o B
<]
~3

Instruction Box (IBOX)

98 o Implementation . . o412

4.1.2 Instruction Box Pipeline Timing
The IBOX Pipeline Timing.shows an example of the parallelism which results in the IBOX

- when a_ series of contiguous instructions are executed, each of which requires a single EBOX

execution cycle. Each box in the figure represents a 100ns event.

.The prefetch logic fetches an instruction every cycle, as long as the pipeline can use the .

instructions. The prefetch logic looks at the instructions as they are decoded, and if it sees an
unconditional .branch, it takes it. If it sees a conditional short PC relative branch or skip
backwards, then it assumes that it is a loop, and also jumps backwards. In all other cases, it
fetches the next instruction assuming the branch is false. When the conditional branch is
executed, if the prefetch logic went the wrong way, the pipeline if flushed, and the processor starts
fetching instructions the other direction. :

Once the instruction is decoded, the next step is to fetch the P-sequence micro-instruction for the
instruction. The P-sequence micro-instruction then specifies a starting address in the I-sequencer,
and calculates register addresses for the register operands. Depending on the operand formats for '
the specific instruction, and the specific addressing modes used, a number of P-sequence and I-
sequence micro-instructions may be done.

After an I-sequencer micro-instruction is executed, there is a two stage pipe. The first stage of
the pipe calculates addresses and does a virtual to real address translation. The virtual to real
address translation was not done in parallel with the cache read so that the page size could be
smaller than the size of the chips used to implement the cache, which are 1K bit ECL RAMs.
The second stage of the pipe can then do two register reads, or a register read and a cache read.

~ If a register is read as a memory location, then the hardware automatically reads the correct

register.

After the operands of the instruction are read, then a half cycle is allowed for the operands to get
to the EBOX. The EBOX then executes the instruction taking some number of cycles, and writes
the result(s) back. The addresses of the result(s) have already been scheduled at this time, and
hardware logic actually does the writes. If a write conflicts with what the JBOX wants to do

. during a given cycle (i.e. the IBOX wants to do a cache read, and the EBOX wants to do a cache

write), then the clock for the IBOX is stoped for a cycle, and the write occurs. For most
addressing modes, the IBOX does not need to write into the cache or the general register file, so -
very few write conflicts should occur.

There is a set of comparators which take care of the cases where a result of one instruction is used
in one of the next two instructions, which causes the appropriate data to bypass the cache or
register file, with no loss in time. The only place where execution time is lost is where an
instruction tries to index off of a rescently generated result, in which case up to three cycles may
be lost. Because of this, it is 2 cycles faster to index off a local variable on your stack, than it is to
load it into a register and then index off of it once.

FIRST INSTRUCTION

FETCHM 1 SEQ

HRITE RESILY

MRITE RESAY
FROM SECOMD INSTR

| mcrerent anp RERD 106TR DECOOE INSTR FETOI P sEQ@ NICROINETR e ::gfs‘;o FRON FIRST INGTR
| TRansLATE PC FROM CROME |- NICFOINSTR AND READ . R | ot e INTO CACHE OR
1 | oo moisTER RANSL t | REGI STER FILE
Te T1e T20 T30 Teo 50 T 170
EXCQUTION CYQLE
OF FIRST INSTR
FETCH I 8B :
INCREFENT AND READ 1NSTR OECO0E BUETR FETOL P 8€0 NICROINSTR i choE MDD
TRANAATE PC FRORM CROME RICROINSTR AND READ

INLCEX REGI STER

AND TRANSL ATION

REGISTER

INTO CAOE OR
REGISTER FILE

|

Te T8

THIRD INSTRUCTION -

TRANSL ATE FC

INCRENENT AND

FETON P SEO
DECODE INSTR AICROINSTR

RERD JI»STR
FRON CHACHE

T8

|

FETCH I 8ED
NICROINSTR
AND READ

INEEX REGISTER

T4

ADDRESS
AR THIETIC

|

AND TRANSLATION |

1
]

|
1

EXECUTION CYCGLE
OF SECOMD INSTR

REG STER
OPERAND READS

HRITE REBUT
FRON THIRD INSTR
INTO CRCHE OR
REGISTER FRE

|

Te e Y20 T30 Teo
€% QITION CYOLE
OF THIRD INSTR
FOURTH INSTRUCTION
FETCH I SEQ WRITE RESW.T
1NCRENENT 0@ READ IM6TR DECODE INETR FETCH P SEQ MICROINSTR | actpics sl papiintiiag . Fron FOURTH ::sm'
TRARSLATE PC FROM CACHE MICROINSTR AND READ NTO CACHE
INOEX REGISTER | AMD TRARSLATION | OPERAND READS ; REGISTER FILE
0 120 30 T40

Te

IBOX Pipeline Timing (IBOXT)

EXECUTION CYQE
OF FOURTH INSTR

66

.

100 ~ Implementation ‘ 4121

4.1.2.1 Index Register File

The index register file is used for reading registers which are used in address arithmetic, such as
in index operations and register indirection. The multiplexer is used to determine the source of
the register address, and the comparator is used to detect that the next cycle is writing into the
register being read, to allow the appropriate data to bypass the index register file, saving a cycle.

The IREGM d'rawihg shows how the 36B x 128W register file is implemented.

i

Ze6 :PC_QAEUED: 25 : M2

8 OAIR<S: 36>

G U AR(®16>

REG_WE

NEXT JBOX REG W _ROR<®: 6

INDEX ¥ G<®: 35>

BEG SEY<8:1>:FI21 REG R ADR_Ac0: 4> \

REG SFY<®:1>:00 REC ROR WD : 4>

REG SEV<O:15:C1) IRG: 18D
&G <®:1>:IN0 1IN RG_FOR<O: 4>

P WU N

o

Ze2:F123 REG R FOR_AO: &

'Y

FI23 INGEX WG FDR SFL<@:2»

7 a1y
10164 o

IHOEX REG RERD Cre

36 BIT
10173 1
X
DO L/s
127 L
A 7 BIT
(=, 4
<
L3 [
e
aw

1HEX REG AOR<O: 6

NEXT W O INEX REG

INDEX REC_QIR<¢2?
INDEX REG ROR<I>
INDEX REL ROR<CH?

INDEX REG _AOR<E)Y

INDEX REG ADR<EY

1BOX NOYT USTNG TACHE

]w:osa

Index Register File (IREGF)

101

DI¢B:6>

B
¥
B
¥

i

.l DO<8;6)> Dit6:11> h .

i3

R x
3

T DO<6; 11>

.
B

201

DI1c12:12>

6B X 1264
RerY
10406 70012172
x

a_u cs

1
3
x
RR<O: 6>
HACO: 6>

j 3 RADIUST

| 1e111

x

<

T

6B X 1268M 6B X 1268
RAN . . RAN .
N T < > DI<24:2% I N . 7| (24: 29>
X x
f__HE_CS . a_ W CS

36B X 128W IBOX REG (IREGM)

68 X 12684
”AN
) S T m(;&&)
%
a__ue cs
SRS

4122 ' Implementation ' 103

4.1.2.2 Instruction Address Arithmetic

The Instruction Address Arithmetic logic calculates the address of the next instruction to be
fetched if it PC+4 (next word), or the destination of a PC relative skip or short jump. In all
other cases, the Data Address Arithmetic logic is used to calculate the address of the next
instruction.

The 28B x 128W RAM is used to remember the PC of all instructions in the pipe, in case one of
themgets an error, or the pipeline gets flushed for some reason.

20 &Y

183 7%

j g -

C5 _IR<B189: (b I1RY: 11>
12 817 1 VAo 9>
73 o 12 Yo 28
C5_IR¢24:35> x
1
$
TiIe L
-
o IRE:
5]
288 X 16M
ADR_ADD «6:3% . -
L 1e1e6n PC OUELEC ®: 225
x
6__uE_Cs
T42 L

Instruction Address Arithmetic (IADRA)

POl

4.12.3 . Implementation 105

4.1.2.3 Data Address Arithmetic

The Data Address Arithmetic logic does all of the non-register operand address calculations. It
contains a set of 16 36-bit temporary registers (see the T REGISTER FILE macro), which can be
used in the calculation of addresses. The REG ADR Detection logic detects if the address
generated is a register, which causes the cache read to be automatically turned into a register read..

T
36 BIT
INDEX REGH :35) 1 10174
T
DATA FROM | ST 11¢0: > 2 x
o DATA<S: 36 3 s En
€22 ADD LEG A<O:1>
Q<e: 36> .
Ac1:36>:2
A2:35) : Ze2
A<3:36):7e3 |

OPERAND SHIFT CN<B:1>

£17 IR 1:3) & :; ;

SIGNED S0 OFFSET<2; B3 1

226:C17 JRC6: I 2

Z28: CACH. nISS R_%K ADRO: 162 ; CA4 CROHE AORK24:31) :2e4 3 36 81T
10164

Y

127 ADD LEG B<O:2)

127 ADD F<®>

REG ADR
DETEQTION

201

127 _ADD €< :4>

127 ADD F<6>

127 ADD RIGHT SHIFY 8 BITS

<8

I Vxe; 36>

oI

T REGISTER FILE

Do

DRTA ADDRESS
ARITHETIC

Data Address Arithmetic 1/2 (ADRARI)

€24 JRe18:1®
s 81T .
117y SO OFFSET<@: 4
C24_1R< ;300 . x
s .
| ,/21 SIGHED SO OFF X T¢8: 36>
SRC REG_OUT_SEL i {6 10 36} FXT:0: 362
C24 FETOH NEM IMSTR L O)
191068
- WD
X
3 81t
REG
acw@> 1 10176 N0 BYY
x
o
& BIT .
REG
811162 3 10176 o IND REG ADR<@:43
x
&
“~\ IMD SYOP C_OPERATION
138 QDD 1LOAD IND REG 4 o
101058
I e 7 y
x
{ IND REG ADR NZ

Data Address Arithmetic 2/2 (ADRAR?2)

L0l

108 Implementation 4.1.2.3.1

4.123.1 Register Address Detection

The Register Address Detection logic checks to see of the memory address is in the range of 0 to -

127, in which case it is a register address.

%t

1198

afafalafa
b7 e M v 14

X

> lnla

IR

=

181098

alafatala
] B 1 b1 M

x

191 98

qretiis

VIVIVIC TV

121==1512
(]

REG ADR Detection (RADRD)

601

110 Implementation 4.1.232

4.1.2.3.2 Data Address Arithmetic Control

The Data Address Arithmetic Control causes the write data (WDATA) bus to be selected in the
Data Address Arithmetic logic, if the word bemg read out of the Index Register File is being .

“written the next cycle.

C

-
-
x 2
o
-

Fl21 ADD LFG A<

101034
ﬂ_/
[+
W

DO RES REO_gW

<

facy

Data Address Arithmetic Control

(ADRARC)

A<

A<

>

11

112 . . Implementation ‘ o 41233

4.1.2_.3.3 T Register File

- The T Register File is a set of 16 registers for use in calculating addresses. They are written into
from the output of the data address arithmetic adder, and can be read into the A or B leg of the
adder. The control of this register file is particularly complicated because results to be written
into it have to be delayed for two cycles, in case a mncro-—interrupt occurs, and the instruction.
doing the write has to be canceled.

.
36 BIT
REG
DIco: 36> 10176
b
x
&
T
Ta3
O 1e1eea
E;Lo
4
1 "
(.
1
Tar-62
o
L
. « BIv T
REG
10126
1
] - x
o
2
£121 T u AoRe@:2> H 4 817 140
\ REG
L 107e]|
SRC_RFG OUT_SEL / x ' .
== s o
L

-
¥

+
T Register File (TREGF)

el

114 Implementation 4124

4.1.2.4 Instruction and Data Address Translation

The Instruction Address Translation and Data Address Translation logic translates virtual
addresses for the instruction and data caches into physical addresses. The address translation is
done by a lookup in a small set associative cache, which has 64 words, and a set size of 4.
Because of the very large address space (30-bits), this method was prefered to the more
conventional method of using a direct mapping cache for the address translation. Since different
data is stored in the two address translation caches, up to- 128 different page translations can be
kept in the processor.

ADDRESS TRANSLATION LRU CONTROL
X (0P 3

T REG
INDEX REG
wa x Uhl SET Wmn
. TRANE HIT SEY RN S o —ReIE RAS ML
298 joTR wpatg AT Ry pITs | < woare AT LA 81T TR s O LS
A8 TR L [} Rt 4

) LORD AT LR DECODE RAM

ADORE 6
© TRANSLATION CACHE

HDEX REG®:I6) INDEX REG

INSTR URCO: 6> = - va TRANE HIT SET
J24 INSTR_TRANS W TRANG M
INSTR M(Q:E’
" SEV PR N ’
134 _INSTR TRANS ROR L)l TRANS DR x

Instruction Address Translation (IADRTN)

Gl

I _REGo: J6>

140 D UFDATE AY LRU BITS L

142 0 LORD AT DECODE_RAM_§.

INDEX REG<D:36)>

FADDRESS
TRANSLATION CACHE

D _VAce: 36>

INDEX REG

124 D TRANS M

A TRANS HIV 8ET

134 D _TRANS ADR L

ADORESS TRANSLATION LRU CONTROL

¥ REG

INDEX RED

VR R

TRANS HIT SET
UPDATE AT LRL BI1TS

LOAD AT LRU DECODE RAN

LRU SET Nunt
TRANS HIT

TRANS NISS

9l

p_TRANS IV L

p_INANS NISS)

6 PR 36>

. Data Address Translatiohn (DADRTN)

f

4.124.1 Implementation 117

4.1.2.4.1 Address Translation Cache

The Address Translation Cache is a standard set associative cache with a set size of 4, and with
64 total entries. The input to the cache is the bus VA <0:35>, where VA<6:35> contains'the
address to be translated. The way the cache operates is to look up four words based on
VA <22:255, and to compare the address stored there to VA<6:21>. If one of those words match,
then the physical address stored in that location is read out. Otherwise, the address translation
required is not stored in the cache, and a micro-interrupt occurs.

248 X 168
Rit
INDEX REGC12: 35>
1 101458 T
X
168 X 160 A e cs
v >
1 101468 T <
x ’ TRANS HIT SET<@>
a__wE CS
248 X 16M
! RAN
~—] 10145A T
x
168 % 16M o e cs
[e
. 101458 T A 16 BIT
x TRANS MIT SET1>
a_wE Cs R
248 X 164
! RAT1
-1 101458 T
x
168 X 16M fa W s
RAN
t 181468 T [o ey
x TRANS HIT SET2>
a__ue cs |
248 X 164
d . RN
LI 1014CA T
x
168 X 164
A w Cs
1 OF 4 + 18146A T A 16 BIY
DECODER -] - CrFEN
o x - TRANS HIT SETC3>
W SET¢@:1> s e e
« P e S— Ak o
[
£NO ENT P
i
TRANS W Ya2 L ’
)mwsa
X
conrENT
P& CACHERRLE
MACE: 21 22:26> MACE: 21> 2
21 s <6:21 MA22: 26> Pac & READ ONLY
PAC £XCUTE ONLY
16 //36 //m Y 4
I 24
VAR 5> | PP URB:1> PR 1>
— 24 BIT
- 10197 PR<2: 25>
IRANS ADR L

Address Transfation Cache (ADRTRN)

UVA26: 35> PR(26: 36

81

41242 Implementation [19

4.1.2.4.2 Address Translation LRU Control

The Address Translation LRU Control keeps track of the least rescently used word in each set in
the Address Translation Cache, so that when an element needs to be replaced in the cache, that
word can be the one The way this is implemented is as follows For each set in the cache, there
are five bits stored, two of which specify the most rescently used word, two which give the least
rescently used word, and one which tells the order of the other two words In order to update
these five bits on a reference to the cache then, these five bits and two bits which tell which word
is currently being referenced are fed into the address lines of a RAM which is programmed to
give the new five bits for this set. It should be noted that the two bits which give the most
rescently referenced word are just the current word being referenced, so they do not need to be
generated by the RAM.

T _REG<33:36>

ab LR HITS<H: 4>

JHDEX REG<29: 35>

IRENS HIY L

BB X 164
RAN
L 101 OLD LRU BITS®:4> D& 6>
x
4 BIT .
Laten a_E cs
VacEa: 26> , 1o =
x
fw'd .
T36L Taa
UPDATE_AT LRU BITS L § 101068
X
LOAD AY_LRY DECODE Réw L
X 1emeea
T44—5
1 817 - 0‘ x
LATOH
IRONS HIT SCT<O> 10176 o
TJRANS HIT SETC1)> . T
TRENS MI1T SC1<2> 101690 x K
JRANS HIT SET<3> x
o
1 arv .
LATCH .
10176
< x TO
o
IRANS WIT SET<3> Tar L
X 2 BIT
LATCH
17e CURRENT READ SECTION®: 1>
x
|
JRANS MIT SET<3> 18106A o
&/
37 0L .

Address Translation LRU control (ATLRU)

L41 TRANS NISS | }

4.1.2.5 Implementation 121

4.1.2.5 Instruction Cache Memory

The Instruction Cache Memory and the Data Cache Memory are both basically the same, and are
conventional set associative cache organizations. They each hold 4K 36-bit words, and have a set
size of 4. The instruction cache does not have a modify bit, so writes to it must also go to
memory. The data cache has a modify bit for every four words, and words are always transfered
between the caches and main memory in groups of 4.

1

37 BIT PARITY|
TREE

INSTR C DATR P ERR

[

X

NSTR C AOR P _ERR <9

D INGB; 365>

INSTR C P: YNSTR OUT<®: 36>

INSTR C WIT SETco>

INSTR C POR P ERR SET()>

INSTR C QOR P ERR SET<>

INSTR € WIT SEV<Rs

INSTR P ERR L 13

INSTR PAcO: 36>

INSTR C WIT SET<®

C40 INSTR P‘D(B: 36>

. A P ERR
INSTRUCION o1 I"snmw‘,uai 00
CONT
CACHE ROL - HODULE
INSTR C M SET ar
x
x 8 AOR
e A
A P ERR
INSTR CAGHE
o1 RERORY oo
- MOOULE
x T
B AOR
;T)
AP ERR
INSTR CACHE
ox HMERORY oo
w noouLE
x HIT
8 AOR
T i
ST AR
, TREE AP OwR
o
INSTR CACHE
ox REMORY oo
e FIODULE
x HIT
8 AoR
e P
16 17 817 PARITY
// N TREE
x
36 |7
REG
TS -
x
o
LN

HOLD_INSYR € MISS
= 10106R
T40 L
<

INSTR C LRU SET NUI<@:1>

Instruction Cache Mémory (ICACHE)

1

i

INSTR € WY SET<]>

4|

4.1.2.5.1 ~ Implementation 123

4.1.2.5.1 Instruction Cache Memory Module

The Instruction Cache Memory Module implements one set of the instruction cache. Since words
are always transfered between the cache and memory four at a time (called a line), the high order
address bits only need be stored in the cache for every fourth word. The two 8B x 256W RAMs
are used to store the high order 16 bits of the physical address for a line. The I18B x 1K and
19B x 1K RAMs store the data words plus parity. The 1B x 256W RAM stores the parity bit

for the physical addresses. - '

PIcO:17>
DI18:36),
88 X 2664 168 X 1K
RAn RAN
T L e o DO< e 17>
x x
e Lh & _C5 f__VE CS_
Z 8o: 2> (o e O
7
R24: T3 I a<9:9> J
1010
Qe
fco: 7 |
88 X 266k 198 X 1K
RAn RAN
e T 21101 poc1a 34
X x
a_w cs | a_ %
CA<B:16> R<16:23> -
. A 16 81T R _AOR<0: 18>
e //s > HIT
/ x 0—___
B<B:23>
e £
o
H r
17 BIT PARIT
18 X 2664 1 TRE 8P ERR
a RAet x
h ¥ 4
x

INSTR Cache Memory Module (IMEMMD)

124

4.12.5.2 Implementation 125

4.1'.2.5.2 Instruction Cache Control

The Instruction Cache Control asserts the signal HOLD INSTR C MISS if an instruction cache
miss occurs. It also selects which set is to be written into on a cache miss.

I36 C M SET MR1<B:1>

& 2 8BI1Y
18168

-

136 _C 4 SET SRC SEL

Teo

1 0F4
DEC COER
18162

. 931

et

TR C M BET<O:3>

INSTR C HIT |

INSTR C MISS |

HOLD Y MNSTR C MISS

2 817
CAGHE LRU CONTROL REG
I _REGc@:36) S _ 1 10176
1NOEX REGc® : 35> IoEx G X
C40_INSTR Pece: > . X
-~ C AR x LRU SET Mt .n
INSTR C WIT SET:3) € Ui sev chcrE wIT K>
G0 UPDATA INSTR
252 UPOATA DISTRC LRY EITS L Ol WPDATE € LY BITS cAoE nss K>
140 LOAD INSTR C LRU DECODE pAn | Ol Load ¢ try pECODE Rt
1 B1T
REG
M 3 10176
—— sereea x
146 _INSYR C OPEERTION L o
x o
145 INSTR C_CLEAR HQLD russ L 0
| 10112

0o

. ‘ Instruction Cache Control (ICACC)

4.1.2.5.2.1 : Implementation : 127

4.1.2.5.2.1 Cache LRU Control

y

The Cache LRU Controt is almost identical to the Address Translation LRU Control, with the
only mail difference being that it has to keep track of 1024 lines, instead of 64.

J REG<33: 3>

INDEX REG<29:35>
T4-61 L
LOAD C LR DECODE RNt
) < 18106Q
M:ﬁlho
x
e Brv
REG
£ ADR<Ea:ID) 10176

UPDATE € LRU BITS |

C _HIT SEY<O)

C HIY SET¢2)’

€ HIT SET<1>

C HIT SET<3>

oD LRU BITS<D:1> RU @B-1>
101068
x
C MY L
€ nIss L
(=3
A
2 BIT
REG
10176 C HIT SET NN®:1>
x
o
S
T46

Cache LRU Control (CLRUC)

o
.
3

831

4.1.26 : : Implementation _ | 129

4.1.2.6 Data Cache and Register File

The Data Cache and Register File contains a cache memory for data, plus two register files, which
both contain the four processor register sets. The outputs OUT A and OUT B are perfectly
symmetrical, and both can read a cache location, a register, or an immediate constant. If a
register is addressed as memory, then if the word was being read out of OUT A, the one register
file will be used to read the register, otherwise the other register file will be used.

The EBOX has two operand registers, OP A and OP B. When the I-sequencer is calculating an
operand to be put in OP A, it normally uses OUT A, and if it is calculating an operand for OP
B, it used OUT B. The P-sequencer can then read a register operand on the other output,
allowing two operands to be read per micro-cycle, with no conflict in the data paths being used.

ORTR CRGHE
nEROR Y -
<@: >
D IN c C 0uT<e:3% (¥
(=]
PR¢@: 352 36 BIY
PR C AR REG
x ; verve C44 C ADR<®: 36>
X
[= 3
LN
HOLD CACHE NISS o
10105R
Tet L 36 BIT
._____.o x 10173 T
L40 IMMED CONST
140 C ROR SE1
745 L
368 X 1268
1BOX REG
—p1 [
x
RA WA _LE
REG SEY<O:3>:SRC REG ADR A<O: 4> REG ROR va2 8
. CACHE AND REGISTER)
OUT_SEL_AcO:1> s FILE cont C40 REG C4@_OUT RTG ADR AO:6Y
o
NEXT W G OUT_REG A ot Co NEXT COP NEXT U _Che_oul_a
LAST W Cr ouY REG A w e x LAST corp LAST W CnP OUT &
n_ADR
368 X 1208 —e
. 180X REG 36 ®T
—p1 oo e OUT B<@:36>
x x T
2
" RA WA _ME_ S 5 .
s
T60-63 .
REG SET(@:1>:SRC REG ADR B<O: 4> REG ADR ta2 8§
. CACHE AND REGISTER .
OUT SEL_B<®:1> s FILE CONTROL . C4® REG ROR €49 _OUYT REG QDR B(@:6)
HEXT W Cre OUY REG B Nt CorP NEXT COrF HEXT W CnP OUT B
S
LAST i Cre OUT REG B L1 Core x LAST Come LAST M cnP OuT B8
n_AoR

REG SET«0:1%:PA21:263

H_DATA<B: 35>

REG H ADR(D: 6>

RIG WE hd

LBOX W DATA®: 35>

Data Cache and Register File (CRFILE)

T

4.1.26.1 Implementation 131

4.1.2.6.1 Cache and Register File Control

There are two Cache and Register File Controls, one for OUT A and one for OUT B. They
control the output multiplexers to take care of when a register is read as a memory location, and
which write compares happen the result of one instruction is used by one of the following
instructions, which cause the W DATA bus to be selected on the output.

LAST W P CACHE . 1817
10168,
1
Ly cre } x
LI
NEXT_44_CHP_CACHE o 1817
18168
T
M cre x
_'/"r
1 eI
REG
nen REG | : J 1 10176 |
191060 x
ox
X
" ADRP: &6
1 817
REG
> eI7 10176
REG M
BEG ADR<D;6). 1 1816 x
x x
x
o
1 | 3
; L. €38 S0 o £ Ceo 50
1
P! ‘ C38 S<1> :
2 BIT ’ 1 817
REG REG 1
s<@:1> ; 1817 c3e sc@:1> ; 10176 | cae seo:> Zcae s3>
x x .
o
L COMENT X
The sy s READ FROM:

-
[

[L3 CACHE
L]] REGISTER
) L] CONSTRNT

Cache and Register File Control (CRFCTL) |

4. 1262 Implementation ' 133

4.1.2.6.2 Data Cache Memory

The Data Cache Memory is very similar to the instruction cache, with the main difference being
that a bit is stored for each line in.the cache, indicating that it has been written into. .

37 BIT PARI
TREE

1 P

x

AP ERR C AOR P ERR SETH)
oath o1 DATA cagc 00 P C:C OUT<O: 5>
CACHE CONTROL - nEnoR
= OO E Wt C HIT SET<o
C M SEY €1 oo . 0o € NODJFIED SET<®>
x B ROR
A P ERR C_ADR P ERR SETC1>
OATA CAOE
- e PENORY
£ noow.€ HIT L MIY SETCL)
8ET MO0 x o0 C MODIFIED BET<1>
8 ROR
A P ERR C ROR P ERR SEY<D)
DATA CACHE
ox rERORY oo
" POOWLE T $ HIT SEVRr
SEY 0D x noD £ NODIFIED SET<(2>
B8 AOR
RA_uA T cA
36 BIV 1Ty
g TREE u AP e C HoR P ERR SEYCH
x N\, oaA cAGE o
/ o1 MEMORY .
. NB: I6S . NODLLE HIT .17 <3
B juce: 36> . { 73
148 SCY € MODIEY BIT SET ro0 . oo C MODIFJED SEYC¢3>
. B8 AOR =
na ca .
PAGRa: 33>
16 BIT
EBOX 1 AOR<16:26> REG .
H 1 10176 o € _HISS BtOCK ADR<H:16>
17 BIT PART x
g TRE
x o
16 4] 4
. S e0R¢8:2Y
Pic@: 35> -
® 3 mv
6 H (T R C _ADR¢D: 3>
EEI0X W_ADR<®: 26> n . X
/ s C LRU SET NUMc@:1>
282 {
HOLD C MISS
RESWLT e < seresn
: B IS0 t
= T O sereea = x
£uHAR 1 C CrP ENL O
¥ x

. Data Cache Memory

(DCACHE)

of
»
A

121

18 X 2664 oD
SEV nOD
o b
— x
a cs
01¢0:12)
DI<18: 36>
o8 x 188 X 1K
RAN
! ”an . L 2e Doce17>
x x
A__uE_Cs a_uwE cs |
2 sen I |
RAO: 9> J 7 .
0<0:9
R<P: 9
wace:9 e
; 8
yd A<®:2> |
Ta0 L
| u
o x 198 X 1K
266H)
I Ran . / L, 2nes DO<1 £ 36?
x x
8 _uE Cs -—“ﬁ—
KA<d: 7> CAB:16 >
R 8 ROR<@: 16>
CrPEN
/a /a c H1T
y. /
' x co————
chco: 16>
B
e B8
=
"
_\ 18 BIT PAR1T
N 18 X 2664 I ™E e e
) .

I F
e 4 x
14 T

A e €S

o0
Data Cache Memory Module (MEMMOD)

Gel

EWAR 1 C W ¥ _NR<o: 1>

961

C W SET<®: 2]

L 10Fa4
2 e17 Ry DECMER

1 10174 10162

¥ [1®176 |
135 C 4 SET mm@:3> x g s iy

3 e a £Ne DO
$ O

Lt QO

136 C W _SET SRC SEL

N .X
4

2 BT
CACHE LRU CONTROL REG
I REG<o: 36> T REG - 1 10176 ¥
IMOEX REG<®:35> . rEG x
c .3 o .
RAOR<H > c am x C
S0 oeTeR:, C HI SEY coE HIT O— CHMIT L
156 _UPDATA_C LRU BITS I S woare ¢ 817s ns (O c miss ¢
120 1060 € Liu rcotE Ren | ~—l LOAD ¢ LRU DECODE kAN
1 erv
! REG .
N\ 1 1076 HOAD C MISE
‘ < 101860 x -
145_C OPERATION L O
Lx X

146 C CLEAR HOLD NISS L

Data Cache Control (DCACC) i

4.1.2.7 Implementation 137

4.1.2.7 Instruction Buffer and Decode

The Instruction Buffer and Decode buffers instructions so that they are around during later cycles
in the pipeline, and decodes them, to find out the starting address in the P-sequencer and the E-
sequencer. It also recognizes branch and skip instructions for the prefetch logic.

NS TR

OUT_A<o: 36>

INSTRUCTION
QUELE

861

SIART <P;: 9>

X START ADR<S; 31>

INSTRUCTION
DECOOE
I STARY
R BF
x
12 BI7 12 |y 12 BIT 12 e17
REG REG REG ®6
€ steRT 1 176 g 101% o 10176 1%
x x x x
o o o &
o . L
3 any sem 3 erv 3 a7 3 ey
®EG REG REG ["EG
BRACH CoND ; 19176 ; 101% 10176 10176 | 10176
x x x x x
o o o o o
L5 L . —rh
T2 T30 T Te8
"
F DECODE I
D

Instruction Buffer and Decode 1/2 (INBD1)

o

IR BUF¢H:36)

Cl1 IR<®:36)

FETCH wgen -

SICHID S0 OFFSET<a:35>

17 IR< ®: 36>

C24_JR<O: 35>

36 BIT 36 &Y
REG REG
191%6 | 1017% |
x x
x x
N ..
36 BIT
e "G
1 1976
x
ox
L,
I 36 81T
101064 17 REG
x) 10176
x
x
.
124

130 _10wED CONST LONG

Y40 L

Instruction Buffer and Decode 2/2 (INBD2)

661

140 ~ Implementation ' 41271 -

4.1.2.7.1 Instruction Decode

The Instruction Decode logic decodes instructions mainly by looking the opcode up in a 28B x 2K
“word RAM. The top bit of the opcode is used to tell if the instruction is a skip instruction or not,
meaning that exactly half of all of the opcodes will always be skips. If it is a skip instruction,
then Zx4:IR BUF<1:7> is fed into the decode RAM, otherwise IR BUF<L:11> is put into it. This
‘also means that 128 of the non-skip opcodes are unusable, but this seemed a reasonable price to -
pay for being able to use a 2K decode RAM, rather than a 4K one.

ZoA:IR BX<}:7)

1 START<2 9>

€ _SIART<O: 11>

11 BIT
181733

IR B3>
<
R BF<® Yo-1 L
!R(g) -le X
l['l.lm

IROD 3001 7

IRCI9 ;001 REG

IR< 33>

IR« M

OD] JS WOT A REG

] 181098
IR 22
IR T / x J/

IR<24> 0D2 X

IRCE> _c0p2)

<J> .0D2 REG

< >

1 _START<8)

002 1s WOT A REG

pl)
< 33> | 101098
< 54> |
<> J x /

Instruction Decode 1/2 (DECODI)

START<1)

BRANCH COND<® :2 >

F OCo0E<o:2)

A/

24/

IR BF (B
101020
I 1 817
x ™~ SKIP_BRANCH LATCH
101068 erwsa 1078 -6 TAKE PC+1 L
SKIP INSTR L ¢ ' { x J/ T ox
x LE-6 WKE_BRANH
o
IR GF <2 Q
ALUAYS ERONH]muan
; x
f N\ AP BRANCH
IR AN L) 181068
BRANCH INSTR L
1 x
PULSE 66 DECODING INSTR L
BRANCH _INSTR
e "'d 101828
IR BF I L
T " SN
101 &R N4 OF INSTR<®>
IR AN<24> L
< x / 101028 ; NU_OF INSTR @
! x
\) M o5 INSTRCID L
l | 10107
IR BN <12 N OF INSTRQ)Y
/LS
| 3¢
3 BIT CYRCE
. “"“‘; 9 10016 ‘ “\ NOT DECEIOING INSTR L
LXr — " o105
I . x Tk DECODING INSTR L
__BY\? -3
..

Fl21 RESET INSTR QUELE

L pL LY 4

-
13

/:x /

DECODTNG INSTR HORD)

4158 Implementation - 143

4.1.2.8 EBOX Operand Registers

The EBOX Operand Registers are used to hold the next set of operands for the EBOX. If the
IBOX gets further than two operands ahead of the EBOX in fetching instructions and operands,
then it stops and waits. If the EBOX is done with a given instruction, and the operands for the
next instruction are not ready, then it waits. The EBOX Operands Ready Control keeps track of
when operands are ready, and when the EBOX takes them.

IN &re: B>

1 8IT
X USE oP A L

LAST W awP_ QT A

1 BIT 1 BIT 1 BIY
REG REG REG
oP AL 1 18126 1,0 c P 18176 .’c o 10176
X x X .
o cx &
0 Al\ T ! *
T To8 T44
=
36 BIT
REG
I 0. % § 10176 4 xop g
x
(=3
L
1 BIT B
-~ REG
LASY 4 OW QT B I‘.,76 . XWEQ:EL
x
o
o
1 BIT 1 BIT 1 817
REG REG REG
SET OP B 1 c 3 19176 c c 1 10176 o o I 10176 Tc o
x X X
+—
[« 3 (=4 o
. L Lo, h ’
™™™ T4 Tae
J44a SEY OP
[
C44 SRC REG OUT SEL X
191068 N
Jso ¢

Ht/

X _OPS TAKEN {

P4 OPS RLADY LHEN 180X DONE |} c
10106/
Y44 100X USING NEXT START ADR L o
P x

J44 _oPs PEADY

_'&uusa '
MLy

10131

144 1BOX SCQ_SRC_CT

x 181268
')
) g x

fIC _INT

EBOX Operands Ready Control (EOPRDY)

® 1 BIV) DCC X ~°
1enee bea » 18|

STOP 0P _RfGS .
101094 .
13

»

) OPS REFDY |,
1013 N
DEC % s
DCY s

S

7

146 : Implementation | 14.1.2.9

4.1.2.9 Memory Interface

The Memory Interface controls communication between the processor and the switch, and takes
care of generating hamming codes, and correcting errors. The format for the switch control words
is shown in drawing IOFORM. An 1/O operation is started by sending an 1/O control word to
the switch, which specifies a memory address, whether it is a read, write, or both (a read-modify-
write operation), and whether | or 4 words are to be transfered. If it is a read operation, the
processor just sits and waits for the data to come back. On writes, the processor waits until the
switch sends a control word back with its VALID bit set, which signals that the processor has a
direct path to memory opened, and to start sending data.

DATA CONTROL WORD

PARI TY VAL1D PA< 2: 27>
® 1 2 3
PARITY READ HRITE | 4 HORDS UNUSED<S: 11> PRB: 6>
(] 1 2 3 - 6 16 17
. - —
PARITY URLID D<16:36>
(-] 1 2 3
PARTTY HAITIING CODE<9:62 DB 14>
[1 2 9

Switch Control Word Formats

(IOFORM)

LA/

FRON rEn¢<

Zze2 °
> 817
10173 ¥
x
s
o HAIING CODE
U _DATA<®: 35> ° GENERATOR /CORRECTOR
36 817
H 172 o1
x x
LI -
L
144 LOAD N OUT REG 4 .
Fscxos fscreae ka4 FEca:2a
1 SHITCH outhuT
V7 /16 /21 FORMATTERS
/] 7 Do
0
26 BIT
FROM SWITCH<D: 24> 26 8 REG
e FEco: 24> 1 10176 Ca4 FSc0;24)
FROM SHITCH<P: 24>
x
o
o
130 REL_INTERPROC INT L . L
X . Caa Feed>
Yaa L X/

Memory Interface (MFACE)

N
\

2362

DI<®: 36>

€1B: 6>

o1’

cx

CHECK BIY
GENERATOR 1 3

PRRITY

SYNOROME BIT
DECODER

s FIX D

Hamming Code Generator/Corrector (HAMCOD)

181 86R

SINGLE _grROR

JBLE_ERROR

VX

z o9
e i 8 (2] T--—-—-'—‘-’—‘!
e ez g2 10163 P2 £2e
e a P3 i P20
Clc® ;C4 8e x Petw PoRB
DIcy> - oo
DI¢> 86
DI¢D> o
Cl<» ;c8 oo
S B1 Py e e FIL
B B2 10163 P2 p——me—errmssne P81
DI<& a1 ol o
ez ae x m_____.._t;‘ﬂj
DI o roal Poo
DI<®» b6
Dl .

3 €1 o0
DI<112 o1 o -
Qe B2 16163 P2 W -
DI< 13> o . .
DI< 14> i x . .
D3¢ 15> os m
DI< 162 86
DI<12> -) .
DI 18> o0
D)< 19> o . e
Duese B2 10163 P2 P23
D<) a3 P}.——_—_m
Dlc 22> Ba x on
DI< 3> - el P8
Dlca a :
D¢ o

»

P18

P

P13

P14

Di<34>

10168

1l ;81 S

PeB

P2

paz

ez
D1<365)

10168

TS 8 EY

10608

iBA 84>

i

13

.
o)
-
]

3y
43

DIC

Ala

3o

10160

Check Bit Generator 1/2 (CHKGNI)

247

Clcy iCE

ae

DIcan) [} L o a
DIe2» 82 10163 P2 ———— P24
1> 83 [) S . |
DLeg® B4 x ¢ £ont
DI< B> 86 [0 N .- .
Dlcds 86 V
DI< 3> ©

PR
PR3
Pées3

|

f

‘"l

10160

iS16 s>

§

Poc4
DI<II>
DI<34>
DI<¥>

f

' 10160

T -3 <42

|

H

i

i

i; |

10168

I

)

N[NIOTo O,
N

& Jy fr
il
v

10168

Check Bit Generator 2/2 (CHKGNY)

15/

k12 3]

g8

10162

x

FIX_D< 36>

FIX D<34>

L
gSKaeR

FiX _x33

Q>
10162 06

ul el
o e
b
X}
!
>
v

2]

10362

£2RO028LS

3¢ foc e x| = §x |

[-r4
10162 Q6
[~

ed¢ 3¢ 15¢

D

Ee E£1

10162

x
$2RELRRS

€0 E1

w [nlnin[w]nie

X
v

-4
10162 06

M
£
X
i

»
=
3
v

)

‘
%
X
M

seer

g1

2>

s

@ 0

b4

o gl
~
b
v

A
tq
v

Q
%
2l
N
v

J
(o]
X
r
a

(o
v

Syndrome Bit Decoder (SDEC)

o
“«
<

T/

4.1.2.10 Implementation 153

4.1.2.10 IBOX Control

The major sections of the IBOX Control are shown in drawing IBOXC. The following sections
will go into detail about what each of these sections do. In addition to these sections, there is a
section which gives the flow of control of the prefetch logic.

P SIOUENCER
CONTROL. UNIT

1 SEQUENCER
CONTROL UNIT

£B0X WRITE
ADORE SS REGISTERS

180X WRITE
CONTROL

Fo

MICRD INTERRFPTS

x

REGISYER RDORE§S
GENERATION

X

IBOX Control (IBOXC)

STOP 1BOX

IBOX TINING
GE NERRTOR

x

4.12.10.1 " Implementation 155

4.1.2.10.1 In.struction Prefetch Control

- In addition to the three micro-sequencers in the machine, there is a hardware control unit called

the Instruction Prefetch Control, which keeps fetching instructions ahead of .the P-sequencer, in
order to keep the pipeline full. The basic flow of control is shown in drawing FLOWFI.

The sequencer goes from one state to the next every micro-cycle, where states are represented by
octagons, with the state number shown inside. The rectangular boxes represent -actions to be
preformed, and the diamonds represent conditionals. The rectangular boxes with cut off corners
represent macro calls to the macros defined in drawings FLOWF2, FLOWF3, and FLOWF4.

INIT X‘&I_ STATE

IR BUF LOADED

FETCH PCFETCH PCea

FETCH INSTR HORD

FETCH NEW INSTR HORD

NUR LBORDS OF INSTR

20R 3

L/

FETCH INSTR WORD 2

N/

Nt HORDS OF INSTR

3
A

(

FETCH INSTR WORD 3

N

]

Instruction Prefetch Control

(FLOWFI)

o

e

¢/

IN

LOAD OP SEQ CTR

LORD DECODE IR

BRANCH OR SKIP INSTR

FETCH PCeFETCH PC4

FETICH IN

STR WORD

Decode INSTR (FLOWEFY)

Z,sf/

HOLD C11 IR REG

3

FETOH PCEFETCH PCea

FETCH INSTR WORD

—

ouT

L

Fetch INSTR Word 2 (FLOWFS3)

-

Y4

IN

SECOND WORD OF
INSTR UWIED CONST

C11 IR NO

(D BIT IN INSTR

umoy

Yes FETCH PCeFETCH PCe4

FETQH INSTR HORD

IR BUF 1LOADED

HOLD EXTENDED I1NSTR HORD.

N

<

e

ouT

Fetch INSTR Word 3 (FLOWF4) .

3 .
<3

160 _ Implementation 4.1.2.10.2

4.1.2.10.2 P-Sequencer Control Unit

The P-Sequencer Control Unit is started at address OP SEQ Start ADR<0:9>, which is generated
by the decode RAM. For a given instruction, it can only execute sequential micro-instructions.
Its main function is to take care of the difference between the many different formats for the

operands of instructions, and to fetch ali register operands, which the I-Sequencer fetches memory

operands.

[]

OF SEQ _START RDR<®:9)>

0

LAST STARY ADR L

J10 c

181068

21 _NIC_DBR_SEL(B)

21 MIC BR SEL<Y?

Bl el)

23 _NIC AR SEL<2)

C IN

101 R

<> 10106R

36 BIF
R REG
b T PH<@: XX 1 10126 P 6<B: XX
x x
A Cs &
B X IK x* 817
wAn REG
PO 300 10176 P16<@: XX
X T 1
x x
P cs b
(oK e
10 E@IT CTR
10016 T)
16 L —
x 3 eraa
ar fe
< S x -
1 817
I — REG
1 19176 €20 FETCH HEW INSTR |
x
x
L,
1 eIt l
REG 120
—_—1 1176 ‘ C10 FEICH NEW INSTR |
x
cx .
..
‘ B
T10
FETOH MEu INSTR L

P Sequencer Control Unit 1/2 (PSEQI)

IR0X USING NEXT START ADR L

17/

IBOK START ADR<S: 3>

P 180X STARY ADR®:

£ _JHOX START ADR4: 11>

D VKB :36)

ergﬁu__;

a8 X &l
RAN

88 X &4
R

T ¥
x

!__UE _CS

P
° \
6 BIT —]
10173
x
1 s

P_IEDX _START AOR SEL<O: 35

P Sequencer Control Unit 2/2 (PSEQQ)

k- 44

4.1.2.10.3 Implementation 163

4.1.2.10.3 1-Sequencer Control Unit

The I-Sequencer Control Unit is the main work horse in the IBOX, and is a powerful micro-
programed controler. It can branch anywhere in its control store, can execute nested subroutines
up to 16 levels deep, and can preform micro-interrupts, which stack their return address. The
control store is divided into two parts, a fast and slow part. The only difference is the time at
which the control bits come out. The fast signals are designated FI21 since they come out around
time 21, and the slow signals are designated 130.

€t _NIC ADR<®:11

Q6 NIC ADRB:11>

P_IBOX START ADRX®; 113 '-\
EI21_NIC BR AOR®:11>)
2 12 BIT CR 12 81T CIR
5 12 |v 10016 10016
1064 s . N
5
x x x
s XK cip e X ares
£121 NIC BR AOR®: 7 " . . [63
6
5 Ti6
\ T22e726
VA<CI2: 36 Py L]
VACI2: 36 ° { v21-23 L
E£121 nIC BR ADR B> VAT 362 1
£121 MIC BR AORB:9> ;UMI4:I6) 2
FI21_HIC BR ADR ;18 ;URIE> 4 81y
21 0iC bR PORE: 1 @:URIE 3
10164 |
EI21 NIC BR ADRH:9> : 110 REG ADR NZ: IND BIY ‘
x
3
&
=
1 BIvY
FI21 nIC CONO $A.<0:2) . L
10133
1
x
F121 nIC BR S0 ®:2>
POUER UP INTT o _oE
Ta44—46 |
|
nIC BR |101080 o
x <o
. 4 BIT CTR
° 10136
1 817
MICRO INTERRUPTS Loty ' '
10133
AIC INT 1 ¥ x
x XK 51 s2 a1
x CK_ o€
v
€121 ISR L
¢ H
4 BIY
LATCH ‘
10133
i DR : . LaZ_INT_ADR<D:3> / 136 ISR L o \
x . 101030
A
CK_0E ‘
-
T47 L

142_MIC EN INT L

I Sequencer Control Unit 1/3 (ISEQI)

s

mc ¥NT

138 <X:Y>

€61 tuC ADR<D: 31

F121<0: 30

XXB X 1K ¢ BIT
REG
L enes ; 10176
x x
a g cs cK
T30
k21 mIC AOR<2:11>
//u
12 BIT 12 @mv 12 817 12 817
REG REG REG REG
10176 ¥ 21 NIC ADR<:11> 1 101 7% ¥ 1 101726 1 1 18176 'S
X X x x
o cx o cx
L L T AL
21 3 Ta1 51
B X 1K A XX BIT
LATCH
Ran - 10176
' 21191 ¥ 3 T
x
x
A g cs cx
T21-24 L

C16 NiC AR B: 1 1>

I Sequencer Control Unit 2/3 (ISEQ2)

COMMENT

MICRO WORD BIT RSSIGNMENTS

I Sequencer Control Unit 3/3 (ISEQ3)

29/

4.12.104 Implementation 167

4.1.2.10.4 EBOX Write Address Registers

The EBOX Write Address Registers are used to keep track of pending writes from the EBOX
into either the cache, the register file, or to memory. There are two write address registers, which
allow the IBOX to schedule up to two writes ahead of the EBOX. If the IBOX tries to schedule
a third write, then it is stoped until the EBOX does a write, freeing up one of the registers. It
has a set of four comparators for each of its two write address registers, which compare the
address of the words currently being read from the three register stacks and the cache, to the
addresses which have pending writes. If one of the comparators compare, then signals are asserted
which cause the IBOX to either wait for the write to occur, or to take the data directly from the
output of the EBOX. For example, if the IBOX is reading an operand for one instruction, and it
finds out that it is the result of the previous instruction, rather than reading the operand from
memory or a register file, it sets a bit in the EBOX operand register saying for the EBOX to use
the result of the previous instruction, rather than the contents of the EBOX operand register.

391

€40 OUT REG ADR A :6)

NEXT & CrP QT REG A
NEXT M O OUY BEG A}

\
o \.
® et 3 HEXY M OP QUT REG B
£90 oyl REG AOR Bc@6>] 10132
< . DT M OW OUTREG B |
LY
L]
\
T — .
® serv] MEXT M Cne DOEX REG
NDEX RED ADR<O:6) h > er? o1z NEXT W P In
INDEX RED ¢ x T IF _INDEX REG §
1 g
x O —]
EBOX W FOR © <19:26> |
EBOX M COR © <19:26> |
Ta2-46 L

EBOX M FOR 1 <1526

EWAR 1 NG OW EN L

EWAR & NDT URLID

EWAR 3 _WALTID

EBOX Write Address Registers 1/4 (EWARI)

EWAR & W ADR<D: 16> :EHAR & M ADR<24:26)

LASY W CrP. C

LAST M Cre C)

EUAR 8 W ADRC16:23>

EWOR © C O EN |

44 _C_QOR<Q: 23> :C44 <32 I3>

EUAR) U ROR<®: 167 :EWAR) W ADR<24; 26>

Caq C ODR<24:33)

EWAR 1 M ADRC]6:23>

10132
x 1
LI
A B BIV Ta2-46 L
aven EMAR ® NO CP C_BLOCK |
c
EuoR @ CrP ¢

> x cr B 00K &

T@-46 L

EWAR 1 N0 CHP C BLOCK {

EWOR 1 Cre C BLOCK |

EWAR 1 C CMP EN L

HAR ©_MWOT b {>]

EMAR 1 LVALID

EBOX Write Address Registers 2/4 (EWAR?2)

Caa C <8: 262

£40 _£BOX REG M ADR(O: 6%

€44 C ROR<27: 31>

Jse C ¥ GECK

C HIT SET Nig1<O:1)

YE2 EuAR & O

) 26 817
. REG
EUAR & W ADR®:2E) 5 10176 o
x
@
L.
o 2 2
10176 ENAR @ C W SEY sanie: 1> 10176
1 T SEL ey ¥
x x
-3 o
L w.N

EOR 1 U 60R<8:26)

EUMR) C W BEY NUN®D:)>

J61 EWOR 1 OK

 EBOX Write Address Registers 3/4 (EWARS)

o/l

CHIT L

STOP W ADR QIF\E FUAL

I t

101098
- X

52 EWNR 8 OX

NO EBOY RESIKT L

Y61 FuaR 1 CX

161 L

144 EBOX N ADR IS A REG

=)
{=)

AR 1 CACHE O EN L

EUAR © REG CTW EN |

s
o ° g 101068
10131 x

BAR 6 CACHE W EN L

EWAR 1w ID

10106A
s X
REG_AOR . bee x
1 m . o - 101068
P! e y
x
pcc x o
Q
I3 by "
r
PHa4 DISAig £ CHAR CIP E3
-l o> .
18331 o
10131
pce x
L—Bdce x
—>C1 o
pc1
R
144 SET_FLAR
— 3

EUAR ® U ID

EUAR & NOT \ALID

'EBOX Write Address Registers 4/4 (EWAR4)

Y

172 : Implementation 412105

4.1.2.10.5 IBOX Write Control

The IBOX Write Control controls the writing into the cache and register files. The IBOX is
structured such that only one thing can be written into either the cache or the general register file
at one time. The T register file is completely separate, and can be written in parallel.

EMAR 1 W ADRC19:26>

RESQT L

EMOR) WG _OW BN L

€121 REG H FOR<O: 4>

7 BIT
18173

L/

REG SET«@:17:D€ ST REG ADR<D :4>

REG_UW ADR «@: 6>

NCXY 180X REG MW _ADR<O: 6>

& 817 € B17
REG REG
10176 10176
1 1
x x
o ox
L ..
7 81Y 7 BIT
REG RLG
1176 10176
1 1 ?
x x
o ox
1 |
™ _Te®

'IBOX Write Control 1/2 (IWCI1)

C40 EBOX RFL W ADR W:63

i/

140 1BOX REG M

148 180X C H

T40 180X USING OUT

168 180X REG M L

¥ 62-63 L

EMAR 1 REG O EN L

IN 62-63 L

168 JBOX C o L

EHAR 1 C O EN |

140 TROX BF G W

STOP W CONFE|
103 17

140 180X C W

X RESULY

g
]

REG _WE
Q 1 BIT
<l LATCH
19175
b O {1 T CUF \
x
o
c
' 16 L

#el

4.1.2.10% | Implementation ’ 175

4.1.2.10.6 Register Address Generation

The Register Address Generation logic is used to calculate all register addresses for operands
address as registers. Since the registers are in the address space, they can also be addressed by
using the Data Address Arithmetic logic if some fancy operations want to be preformed, but that
ties up the cache. The Register Address Generation logic is used by both the P-Sequencer and
the I-Sequencer.

»

]

Register Address Generation 1/2

-
P22 DEST REG CN <o>
IR(14:18)
DEST REG AOR<O:4) .
P22 REG W ADR<O:4)
£22 DEST REG CTL(1>
23 0T SCL«@:1>
2oy ¢ e 2 arv
. 19168
T $8._A0:1
x
1 P -
£22 OUT SEL A 161058 / i
! x / N
ST o a
e 2817
L 19168
T QY _SB._B<®:1)
X
1
Pz our i @ 1anesa T)
7 x_/ W
SEY OP B .
001 G "RDR<B: 4>
e & a1y
10188
2 ¢ 0D R < >
202 REG AOR<O:®> x
3
$
. ey
. SRC REG OUT_SEL
b REG 1 BIT 1 817
REG G
10106h
P22 SRC REG OUT SEL . 1 10176 y 10176 o €48 SRC REG OUT SEL
X/ x x
& & 1 BI7
s
, 1817 C44 SRC REG OUT SEL
T30 140 1 b
x
o
. -
Tae

/e

€16 IR<19:23>

Ci16 IR<14:18>

1 SRC_RYG CTL<®

£22 SRC REG CTL_A<B)>

001 _REG_ADR<®: 4>

iC 6 BIT
10197

[IRV19 [
C < 29>
c <232 191098
[d 22>
a1 <p3> X

RE. (.31 22

P22 SRC R G CTL_Ac>

1 REG R ACR<D: 47

Pg2 RCG R ADR<O: 4>

1 SRC REG CTL<3)>

P22 SRC REG CTL R<1>

101068

€16 JR¢31:36>

lx

P —_

® ¢t _l
10173 T

R<31>

32>

<33

(34>

(] (ol 112 L]

N|0IO[NO

(35

Ci14 FETOH WNEM INSTR L

x
LY

181098

P22 SRC REG CTL B<O)

o 101968
Jay | c N

P22 _SRC REG CTL _B:®>

002> _RFG ADR<O: 4>

F2_SRC REG €T B3>

P22 SRC REG CTL B<1>

| 101080

SEY OF B)

A

Register Address Generation 2/2 (RAG?2)

SET OP B

(L

ae

B

A1z

e

$<1:9>

£ _LADD A+ OR A+8

5 Bit Adder/A SEL

(ADASEL)

§//

4.1.2.10.7 ' Implementation | | 179

4.1.2.10.7 Micro Interrupts

Micro Interrupts allow various conditions to interrupt the I-Sequencer to be handled, such as a
cache or page fault miss. When this happens, the micro-program PC is stored on the subroutine
stack, and instructions start getting fetched at the micro-interrupt address assigned to that
particular interrupt. The various micro-interrupts are all fed into a priority encoder, which .
comes out with the address of the highest priority interrupt.

PC_ADOREXSING 1NT

JRANS NISS INT

EXEQITE ONLY INT

-

READ ONLY YNNI

w N

€ AR P ERR_SET <O

C AR P ERR SEY <32

C ROR P ERR _SET 2>

£ AR P ERR SET 3>

€ _NISS T

10165

¢ 3

liere6n

NIC INT

10166R

INT _RER<E)>

C
10

b { AR

A9

INT _QDRc1®>

T o9

INY ADRC13)

C DAIA P ERR

-

w »

»

»

10166

g 28 i

()) b b

9dn

Micro Interrupts 1/3 (MICI1)

B

14

g/

€48 OUT REG ADR A<2)> “~ READING PC OUT A

€40 OUT REG ADR ATy
€40 OUT_REG ADR A4

101998

€40 OUT REG ADR A<B)>
101048
C40 OUT REG ADR RG>

€48 _OUT REG_ADR_B¢2> ™\ e
€40 OUT RFG_ADR B<3>
C40 OUT RCG ADR Be4)> 1010%A

£40 OUY REG ROR B<EB»
€40 OUT REG AOR B6)

101848

148 C FFTCH

Cae_JRSTR OICUE Tevor

Sam:z> EXFCUTE OMY L
19106A

0 ROR L

140 C W CHOOX L

C ARG - READ ONLY L

101068

€40 C OFERATION L

]l.l.ﬁﬂ

PC ATDRESSING INY

yA

£X.Q5TE_on Y INT

191098

FEAD ONL Y INT .

101090

Micro Interrupts 2/3 (MICI2)

15/

La1_TRews miss |

TRANS NISS INT

c 10106R
134 TRANS ADR BYPASS o
x
C_H SET<@) .
C H SET<1> C NISs_INY
C H SET<2>
C HIT SE1<¢3>

134 C OPERATION | o

IND STOP C OPERATION

<>

191 66R

ox 183176 ‘o Ca0 C RATY

Micro Interrupts 3/3 (MICI3)

-~

'{)\7 /

I

G

4.1.2.108 Implementation : ' 183

- 4.1.2.10.8 Stop IBOX

The Stop IBOX logic detects the conditions which cause the IBOX to stop its clock and wait for
some event to occur. '

LAST W CrP A OUT i

SToP_ A

NEXT & CHP A OUT ¢

> RESIRT L

ERGR_Fiat L

J40 160X _USING OUV

C40 SRC RFG OUY SFL

LAST W Cre .8 OUT L

101038

18183R

10103R/

IROX USE OUT A i

160X USE OUY B L

NEXT W Cre B OUT L

NO RUSIRY 1

LhaR Lkt L

HD RFSULTY ¢

NEXT W CHP INDEX REG L

EHAR Fa L L

BI0P B

syoP C

LIST W CHP INGEX FEG L

Stop IBOX (STOPBX)

-~

,X/

412109 : Implementation 185

4.1.2.10.9 IBOX Timing Generator

The IBOX Timing Generator generates the eight phases. of the clock used in the IBOX. It
consists of an eight bit circular shift register which is initialized to the sequence 01111111, and it
just circulates the zero around. The shift register is never really stoped, but when the IBOX
wants to stop its clock, it just disables the output drivers on the shift register.

ity

. (NAOLLD Joressuag Sutwnt XO4€I

N

€© 20 14 ed ., o 20 W@ e o ¥ o g o L o 3 4o
- " . ° ° ° °
- x 23 x o x 204 X 224 x 23 x 394
»tet s wiet TS .
ran 20t 12 w2et © icen
1T ». 20 10 oo I s 22 10 o0 ™ ° o ° a ° e ° a ST
s s s s

a3 [k] o 4 4 g
o o

x 230 x 310 T3 8539 do JOLS
[3T 1) et TN JONO 30 _H_JOLS
- 3_J01S
k] 8 v!)l_s
9 J0LS
ISTTIND N J0LS

NINS 00T WI 9 A OI'MA 3 1IN FIUNNS JOL3*

4.1.3 ' Implementation 187

4.1.3 Execution Box -

The function of the Execution Box (EBOX) is to perform variable-precision arithmetic and |
logical operations for the IBOX; it executes one micro-instruction each 100 nano-seconds. EBOX
can be decomposed into the EBOX ALU (EBXALU), the EBOX Register File (EREGF), and the .

"EBOX Control (EBXCTL).

. The EBXALU performs arithmetic and logical functions on two operands read during each cycle .

from the register file.

The. EREGF contains 32 read/write registers. During a single micro-cycle, any two registers can
be read for use as input to the EBXALU. Furthermore, during a micro-cycle two input operands
from the IBOX can be written into any even-odd pair of registers, or the result of the EBXALU
operation can be written into any register, or one operand from the IBOX and the result of the
EBXALU operation can be written into even-odd pair of registers.

The EREGF also can shift quarter-words and half-words into position for the EBXALU, can
sign-extend floating point numbers, and can deliver zero operands. _ o

X A OP<@d: 35>

EBO¥Y, CONTROL

X B OP<®:-303,

c
. i
RecreTER

hor FLE A REG<O: 36> § ERx AW

A REG prmmemrr————— e e e A
o o o . R <@: 35>

6 Rec B REGO:I5> 8
[

Exeéution Box (EBOX)

.

»

4131 ' Ifnplementgtion 189

4.13.1 EBOX Register File

The EBOX Register File (EREGF) stores initial and intermediate operands for use by the
'EBXALU during a sequence of micro-operations. ‘ _

The EREGF contains two duplicate banks each of 32 36-bit registers (R[0:31]). Identical data is
always written into both banks. During a single micro-cycle, the IBOX A and B input operands
can be written into any even-odd pair of registers (A into an even register and B into an odd
register), or the result of the EBXALU operation can be written into any register, or one of the
IBOX input operands can be written into a register (only an even register for the A operand, and
only an odd register for the B operand) and the result from EBXALU can be written into the
other register of the even-odd pair. ‘

Since the first cycle of a micro-instruction sequence normally takes two input operands from the
IBOX, the result of the previous cycle (ie, the last cycle of the previous micro-instruction
sequence) can not be saved in the EREGF.

Because the two register banks contain identical data, any two registers may be read out during a
micro-cycle for use as input to the EBXALU. In the case of a micro-instruction which reads the
result of the preceding operation (or a micro-instruction which reads the A or B input operands
from the IBOX), the necessary data is bussed around the register banks, therefore, although
writes physically occur one cycle late, they logically occur on time, except as noted below.

Each operand read out of the EREGF can be independently translated. The available translation
modes are: straight through, floating point sign extension, left justification of a quarter-word, and
left justification of a half-word. Operands which are bussed around the register banks (as
described above) cannot be translated.

The EREGF also has the capability to deliver zero operands on either the A or B output
independently by disabling the register file output.

D¢B:I5>

f_or<e: B>

X USE A of L

0AN<®: 36

f EVEN RAn CS L

368 X 166

101468
<9 el

E TRWS A SB<@:3>)

EUSE 1 aOPYL
M :
a UE CS
f_van ADR<B: 3>
ZL ;d 1810
LTy
CP@ ABOWT CYOLE 3 . o Co L
368 X 164
A
101468
h <«@de3 T
X USING OP3
A 4
5 L X USING OFF L A _uE
B_EVEN RN CS L
'_ 368 X 164
L] RAR
36 BI7
. 101468
73 5 <®: 36> e
. L]
B 0P:0: FE) 1 . z
: £poX REGISTER
a cs FILE CONTROL
B_RAN AOR@: D> c
167 L -
EUSE 1 BOPE &
101068 8 0D RAN CS L
X USE B OP L
Yust B OP L -
EBOX Register File (EREGF)
i -
£

413.1.1 A Implementation S 191

4.1.3.1.1 EBOX Register File Control

The EBOX Register File Control (ERFC) primarily detects when the current micro-instruction is
attempting to use a value which will not be written into the register file until the next cycle, and
in that case commands the EREGF to bus the data around the register banks.

The ERFC also detects when R[0] is being read out (on either the A or B outpﬁt) and commands
the EREGF to output the value zero. R[0] can therefore not be used to contain data. '

The ERFC also controls the chip select lines for the EREGF so that either one or two values may
be written into the duplicate register banks.

-E 0P A ADR<B:4)

6/

8 ADR COMPARES |

E3® OF MW ADRKD: D>

1 BIT
o | e L1400 u moecs: .
£16 0P 14 ADR<4> ‘
LR ¢
ox
____"\
Ti4 L . /
< sereea L
' P
£ OF A fORH: >
7
4 BIY
LATOH
10176 L34 OP i ADR<®: 3>
-
- -
Ti4 L

E.OP D fOR¢D: 4>

E OF B FOR<®: 3

B ADR COMFARES |

EBOX Register File Control 1/2

(ERFCI)

o

E OP A ADR<4>
P R ANRE)
E_OP A ADRCYY)
E_OF 6 RORC2Y 101 098
€ OF A ADR(I> (===
OP A ADR<4> [_o 19
: F
- =
10106A
1 1 817
B8 _B0R COMARES |
. 0 3 10169 .
) e
* . &
.
Ize-23

B_QOR COMPARES |

EBOX Register File Control 2/2 (ERFC2)

10110

10110,

A EUEN RAN CS
Q_EVEN RAK CS

RAN

VEN_RA
EVEN RAN Ve

0DD RAN CS 7
RAN CS _~

4

194

Implementation 4.1.3.12

4.1.3.1.2 36 Bit Translate

~The 36 Bit Translate (TRANS) is used on each output lég of the EREGF. Each TRANS is
independent and has the capability to perform four different translations as follows: ~

L.

‘St:aight through. The value passes straight through the TRANS without

modification.

Sign extension of a floating point mantissa. Each bit of the exponent of a

* floating point number is replaced by bit 0 of the floating point number.

Quarter-word. One of four quarter words (depending upon the low-order
address bits from the IBOX) is left justified, and the low-order quarter words are
set to zero.

Half-word. One of two half words (depending upon the low-order address bits .
' from the IBOX) is left justified, and the low-order half-word is set to zero.

The TRANS can not be used to modify the result of the preceding micro-instruction.

v

Tzt pey
T o
< >
({13 > =
SELce: 1

J<o:8>

<9 .

J<2:12> N

<18: 26> 2

$27; > 3 9 BIY
10164 ¥

1«®>e9

2T Y

J<D:37>

1 EN /9

£16:29>

10192

-y EN 2

1¢30:35)

198292

36 Bit Transtate (TRANS)

4

196 Implementation .‘ ' 4.1.32

4.1.8.2 EBOX ALU

The EBOX ALU (EBXALU) performs all arithmetic and logical operations for the EBOX. The
EBXALU can be decomposed into the 3 Input Adder (3INADD), the Shift Box (SHFBOX), the
Exponent Box (EXPBOX), the 36 Bit MUX Merge (MUXMRG), and the Q Register (QREG).

The 3INADD can add three operands, perform a few other logical functions on three operands,
or perform general logical functions on two operands. The input operands to the 3INADD are A
(the A output of EREGF), B (the B output of EREGF), and Q (the quotient register, QREG).
Internally, the operands are shifted and multiplexed so that a single micro-cycle can do four bits
of a multiply. , :

The SHFBOX can do arithmetic or logical left or (limited) right shifts of a double-word input
onto a single word output. The three single-word inputs to the SHFBOX can be combined in
various orders to accomplish single-word arithmetic or logical left right shifts or rotates of up to
36 bits in a single cycle.

- The EXPBOX performs exponent arithmetic. The EXPBOX has its own internal registers, so
that after loading the EXPBOX from the A and B operands, exponent arithmetic can proceed
independently of the computations in the main data path.

The MUXMRG produces the one EBXALU output, R<0:35>. The inputs of the MUXMRG are
. from 3INADD, SHFBOX, and EXPBOX. Special inputs are provided for special functions; one
. input merges the exponent with the shifter output, one input does a multiply shift, and one input"

does a divide shift.

The MUXMRG also has the capability to selectively merge each quarter-word from the
SHFBOX with the output of the 3INADD. This capability is used to merge the result of a
.quarter-word or half-word operation (which is shifted into place in the SHFBOX) back into the
_ destination word (which passes unmodified through the 3INADD). In this case the destination
low-order address bits control the MUXMRG.

The QREG holds the multiplier during a multiply sequence, and: holds the dividend during a
divide sequence. The QREG has shifting capability internally. The QREG can also be used to
hold temporary results (for example, over the boundary between one micro-instruction sequence

and. the next).

EXPOMENT BOX
- H-L] o .
| WIS ST . ! 1Y <}
€ or . * 200 i1 o
e o D@ -
) .)
. L 12 ASHIFY 2
FTe<P>; < (3 N> d 3 3% 03T
R0 iR L= .
£R<O; 6> S AT Ig 0
< > < P> Py
L —
L2 2 a SGFT BOK
petde s SHIFT fme e ENIPLSOI)
LTS — 16 s
Ea(“'n) . -
2]
(]
REG ISTER
oe @ pr—— O)
e e 3 1MPUT RODER
[I7F ’ Py SE—
£:0:36> ™ f

EBOX ALU (EBXALU)

V7%

198 Implementation | S 4.1.32.1

4.1.3.2.1 3 Input Adder

The 3 Input Adder (SINADD) has the capability to add three 36—bit numbers, to perform some
other limited logical operations of three 36-bit numbers, or to perform general logical operations
on two 36-bit numbers. The three-input addition capability is used primarily to produce 4 bits of
a multiply operation in-one micro-cycle. :

The 3INADD can be decomposed into the Carry Save Adder (CSA), the EBOX Full Adder
(EFA), and various multiplexers and multiplexer latches.

The CSA is an array of 20 ECL 10180 chips. The CSA forms the first two legs of the three-
input adder. During a three-input add, the CSA adds three operands to produce a sum and
carry vector output (each 40 bits long), and EFA adds those vectors to complete the add. Two
legs of the CSA are dedicated to A, (or to shifted versions of A) which is the multiplicand in a
multiply. The remaining leg of the CSA can receive A, B, Q, or a micro-code constant.

| Each of the three inputs of the CSA can be independently set to zero. Furthermore, the 10180 -
has the capability to independently complement two of its inputs. These capabilities are used in
the multiply*micro-cycle.

Two-operand functions can be performed in the EFA. One leg of the EFA can receive A, B, Q,
_or micro-constant (in addition to carry out from the CSA), and the other leg of FA can receive
only B (in addition to sum from the CSA). The EFA produces a 40-bit output.

QB :36> 72

Bc@:35> s2

9<@:35>

EL_MC<9:36)

f¢@:35) s2

A0;36> s2: 2

f@:I6> /2: 22

<@ - 36> = 203

8¢8:363 2

ECOrP Q01 : RE

FRB: 39>

RLTIPLY
CONTROL

T19-13 L

;) N

SHIFT Ao
SHIFT Ao | AN
AB1 1 EN e FO1H EH L

SHIFT A2
SHIFT AZ3)

A23N EN o.______&]" EN .
RECOM® R01 | gg“l’-%
RECOM A23 ECONP A2 3
01 €I Ao C1
23 C1 a23 ¢l

3 INPUT Adder (3INADD)

L 4

64/

200 | Implementation - 4.132.1.1

4.1.3.2.1.1 EBOX 40 Bit Full Adder

The EBOX 40 Bit Full Adder (EFA) can perform arithmetic and logical functions on two
operands. It is constructed with 10181 ECL ALU chips and 10179 ECL, carry-look-ahead units.

The EFA can be decomposed into the 40 Bit ALU 10181 (40ALU), the EBOX Full Adder
Control (EFACTL), and the Condition Box (CBOX).

The 40ALU performs a full add in 24 nano-seconds worst case from the data inputs, neglecting
wire delays. It also performs the full 10181 repertoire of logical and arithmetic functions.

- The EFACTL controls the EFA, producing the mode, function, and carry-in signals for the

10181. The mode and function bits can come either from micro-code or from the divide logic.
The carry-in bit can come from divide logic, rounding logic, multiply logic, carry-out of a
previous cycle, guard-bit logic, or micro-code. The Rounding Box (ROUND) saves guard bits
during floating point operations and generates a carry-in bit for the EFA depending upon guard
bits and rounding mode. ‘

The CBOX detects single-word overflow, single-word negative, single-word zero, single-word less
than or equal to zero, mantissa zero, and mantissa overflow. Single-word carry out is generated
directly in the 40ALU. Since quarter-words and half-words are left justified and zero-filled in
the TRANS, the single-word conditions are sufficient for testing quarter-word and half-word
operations. Wrong Branch Logic (WRONB) combines the generated conditions with control bits
received from the IBOX and determines whether the IBOX took the correct branch on a
conditional branch instruction. If the IBOX took the wrong branch, then X WRONG
BRANCH automatically becomes asserted.

A<B: 39

a CONDITION
Box

£e8: 39>

StO:E}

EBOX

CONTROL

FR _CTL<9:5>

1
L FA CTic@

-
/A CTic):®

3
£ __Ea CrIcs

EBOX 40 Bit Full Adder . (EFA)

/0

-
Z:RENM L:REM:REN:-RIA L RN L DIV CTL<B:6>
;RENAINDER<® + ADO ELSE SUBTRACT
3
SN o e REM N SREMAINDER SIGH
10131
pcc © RER N L REMAINDER SIGN L
[1eg
120 Ser
R
£10 FA CTL<0:4>
H
ROUNDING RAMD CTL<®:6>
——_f
co 4
3

Z:Z:r:H:Z .ADO

AN
a23 c1 L/

MATIPLY CTL<®: 6>

€10 FA CTL<O: 4>

H
pis AOD €0 CTL<0:6>
sH_CO 10141 €28 su Cp /
suco |, T !
a
PE K
Q ol

203

GO:G3:Y

E18 FA CTL <2

£18 FA CTL<1:4>

£18 FA CTL<E) . EBOX FA Control

(EFACTL)

Ei@ FR CTt <@:5>

DIV CTL<D:6>

ROUND CTL<®:5>

MLIPTLY CTL<B:6>

ADD_CO CTL<®:B>

Q0D _GUARD CYL<®:EB)
€18 FA CT11 <B:4>:CO STATUS

El1@ FA CTL SEL<B:-2>

N &0 A W

& 8x7¥
10164

o2

-5

Lk

[[{&x 3]

3

SCNT<0)

1 817

10141
I

PR

C8 R<¥5> ;R LSB

g

SOuIc1> | 1018
E
soNTeR
SOHTep 10100
| F

ECHT<a)>

SCNT<B2

G}

[1)

Y

{ uusag
L2/

1218

10 _RND <@

£10 BND DOOECY) ey

niensy

3

COrENT

FLOOR MOOE (2 OR 3 + CO = &

CEILING MODE (1) + CO = GO+GI+Y

STABLE NMODE (8) + CO = GO (Y+GI1+R<¢I6>)

COMMENT

Rounding Box

LE_ Sl i » 38m
i . A 3 |17 REGEN
SHIFTCI6: 375 M GUARD SUNC®:2> + e REGEN
\ ¥ 1
e e " °
7 SHIFY(36:37>:50 2 L ;DIVIOE PE X
N
: T T8
E12 G SELCO)

IF SCNYT=—1 (RIGHT SHIFT)
THEN Ye(Y OR GI> ELSE YeY

(ROUND)

CBOX<4)

103 &

CBOX< 13>

. i) 3
H:2:2 i0® ﬁ L————B(o -

1

2 H

3 3 BI7

10164 | CPOX SEL(®:2>

‘e
Z:H:Z a8 'S
sH:H .H-‘ }
4 r/‘s EN / <2

/7
z N
/ €BOX_SEL<O:1>
Vd
FR CTL<1> ; E N\
10106A E
Pt
fact ;) 12 ®
. 1 81V
B3 3 el 10174
¥

1 = *

2 L 3 &N
Z2:7:Z .l 3 3 817

10164
T

.- -

13

&
HiH:2 iRz

7 s EN
£A _CTL<2:4> \/r(

LOGIC

. Condition Box (CBOX)

CONDTTION
GENERAT ORS

WMJ-
101068
y A e

o
R<ar 3 X
o [et sy
= 712 /)
10107
f-XE 1)
/ [4
$ea>
A14> /3 \[i 2
1019 ?
CHOX<14> T Y L
/L2
’ 10107
$<14> / £

Condition Generators 1/2 (CGENI)

L d
suN ALY COND<O>
Mz MY CoNDl
sy BLY CONDTY
84 €O L8 <32

MANTISSA

SINGLE WORD

CARRY OUT
NOT OQUERFLOM
NEGATIVE

S

<4)>

<6)>

<6

2>

<8

<9

&

<11

<12

Aafaia

4 Y4 H4

lojetwly

2IRARALIR
&

36

<37

R {3:]

<3N

Condition Gén_erators 2/2° (CGEN2)

E

LESS THAN OR EGQUAL (2FRO)

NON-ZERD

79

1 a1y
';::;‘ . 117 Su N .
stN : .
L' LIZSumNL :
-
1 817
LATCH
117 Uz |
Wzt T
LR 117 8uz
& .
' &7
LATOL
197 su \E .
s IREE
b LIZSULE L ‘ .
ox
0z ?
s aIv
) LATCH
10134 7
Clp GRANCW LESS Iy
o z W LESS
N
1T . .
LATCH »
C12 BRANCH ZERO i 10134 7
£ 1 L17 BRONCH ZERO t |
e
1 Brv
LATCH
€12 _BRANGH GREATER BT
F ol L17 BRANCH GREQTER L
« .
1 BIv .
LATCH . ;
€12 BRANCH TRKEN - Qe
3
¢ 1l L17 BRANCH TAKEM L _
o -
[&2

: _ Wrong Branch Logic (WRONGB) .

208 Implementation 4.142.12

4.1.4.2.1.2 Multiply Control

The Muluply Control module (MPYCTL) generates various control signals for use during a
multiply cycle.

4 bits of the product are generated during each multiply cycle; the MPYCTL examines the 5 low
order bits (including’ the carry out of the least-significant bit) of the Q register, and sets up the
3INADD to perform the multiply cycle. One leg of the three-input adder receives A (the
multiplicand) or Ax2, another leg receives Ax4 or Ax8, and the last leg receives B (the partial
product). Each of the "A" legs is either added to or subtracted from the partial product.

The table included in MPYCTL defines a 2-bit-per-cycle multiply algorithm. X0 represents the
least significant bit of the Q register Q<35>, X1 represents Q<34>, and CI represents the carry out

from the Q register from the previous cycle (Q<36>). F shows the function to perform, that is,

PARTIAL_ PRODUCT<PARTIAL_PRODUCT + FxMULTIPLICAND. Q and
PARTIAL_PRODUCT are then shifted right by two bits and the cycle repeats. The other
columns of the table show the values of various signals which are needed to implement F. The 4-

- bit-per-cycle algorithm is a direct extension of the 2-bit algorithm; two 2-bit cycles are performed

in parallel usmg the 3INA DD and examining 5 bits of Qmstead of 3 bits of Q

+

x1

o 0 » =

€1

10169

SHIFY EN L

® &

-

1

-

10180 MAY
= a mATIALY PR R Vo) EE———.) L2 5. §
o
2 1 CONTROL Ao EN 0__—.___!-"-9.!*
Iy PY POPPP T R — -) 2 . >
n -
N
1 ° A2 EN o___—___mk
1 .
] 1
. '
. 1
b d csh
CoNTROL RECONP® RO1 __.___.w
RECOMP A23 pmm———een—BECONE BJ
.
mATIAY
cIn 80y CJ
CONTRQL it
A23 €1 H23 €1
c

Multiply Control (MPYCTL)

- E6_Ad1 SEL <2

-

w N

H__SHIFT 3

L ICELLLALEIR S————

Fy

2__;SHIfT @
£ SHIFY ®

N N

H__sBHIFY 1

R <-o2 LBUER BRI

180 }
10164 | SUFT f0)

E6 MY EN
Q5
Q< 36>
ES

LR \

H__iSHIFY 3
2 SMIFT 2
aSHIFT

H__iSHIFY 3

NN W

31 BIT
10164 T SUFT as3

€6 aey_FLcO)
5 1817
10164
" T
* ¢
n
Z .
H 2 En

€6 MRT EN

Q<36
Q35>
Q¢34>

e \

-

1 BI7

& W N

T N [T

Q34>
033>
Q32>

Muitiply MUX Control (MMXCTL)

[0

10164 o f20 EN L

o/

934

CSA Control

(CSACTL)

"

N 2 I I NN NI

Q<34:36

1
2
3 1 BIT .
1064 - £ _C1
- 1
13
78 (3]

J

1 BIY

10164 023 C)

N & W N
W

N 2 I IENINNE

Q334>

2 EN

=

Muttiply CIN Control (MCICTL)

< o

o

4.1.322 " Implementation 218

4.1.3.2.2 Shift Box

The Shift Box (SHFBOX) performs shifts in parallel with the arithmetic operation of the
3INADD. The SHFBOX can be decomposed into the Shifter (SHIFTR), the Sticky Bit
Generator (STICKY), and various zeroes counters and multiplexers.

The SHIFTR takes two 36-bit input words, and can perform a left shift of 0 to 47 bits or a right
shift of | to 16 bits onto a 38-bit output. The two low-order bits of the output become guard bits
in floating-point operations. Guard bits may be merged into the SHIFTR input at the top of the
low-order input word; this capability is used during floating point postnormalization.

STICKY examines the output of a zeroes counter (the 36 Bit Bottom Zeroes Counter) and
determines whether all the bits lost (beyond the guard bits) in a right shift are zero; if any lost bit
is a one, STICKY asserts the sticky bit, Y. [Kahan 1973] discusses the need for and use of the

sticky bit.

Two 35 Bit Top Zeroes Counters (TZC) allow the contiguous zeroes (or ones) at the top of a
floating point mantissa or an integer to be counted. The floating point count is useful during
postnormalization.

A 36 Bit Bottom Zeroes Counter (BZC) counts the contiguous zeroes at the bottom of a number.
" This count is essential for generating the sticky bit Y.

° -
36 81T x av \55
COMPLENENT o c 12C<835>
A1:T35> /Y 1 18196 Y ARS<y: 36> - 1 ZERGES
i ¢ COUNTER 1Az
H
conp | o™
/2>
faud /31 /
A _ARS<9: 35> " 3% BIT
YoP F2C0:6>
§ ZEROES
COUNTER FoLz
Heg L3
v ox
Tie-13 L
A<B: 35>, r°\—
36 BIT ’
10173 SHIFY @ _IN <0:35
E18_SHIFT A IN SfLci> 10104 "
B8AOZNO) b s
€ l 2
SHIFY B_In¢@:1>
7
£10 SHIFT A 1N SEL<®)
GO: Gy
) £12 SHIFT B YN SEL<O> l
36 @Y
LATCH 34
10176 SHIFT B INeB: X)) Lo SITL R IN2:Te>
1
L 7 ~ -
Tex
Ti0-13 L
B®:I5) /1 N ppp— 7) STICKY BIT |
36 BIT BOTTOM GENERATOR ¥ azc
8:@:36) 21 1 18174 ZEROES € B2C<0:5? B2C ¥
BAQZN<0: 367 1 COUNTER
9 @: 75> . 2 B 7 SCNT<®: 5> Lo B2 s 6Z Since: 6>
Ze34 o Y
F6 SMIFT B TN $TL<3:2Y
Tie-13 L

Z2:C16 EXP N<®»

E6 PRE EN

Shift Box (SHFBOX)

14.1.3.2.2.1 _ | lmplémentation 215

4.1.3.2.2.1 Shifter

The Shifter (SHIFTR) takes two 36-bit operands as input and can shift them left 0 to 47 bits or

‘right 1 to 16 bits, producing a 38-bit result (36 bits with two low-order guard bits for: floating

point operations).

- 'The Shifter Control (SHFCTL) allows the shift count to come from various sources as follows:

a QW3 holding register,

- a.QW2. hold.ing.register,'

- QW3 of the A register,

- QW2 of the A register,

- micro-constant,

- exponent ALU holding register,

- constant fields for spedal operations,

- top zeroes (ones) count of a mantissa, and -

'top zeroes (ones) count of an integer.

In addition, many of these counts can be subtracted from 36 before being used. Subtraction of a
count from 36 is necessary for simulating right shifts.

The SHIFTR is composed of three levels of multiplexers. The first level performs a shift of 0, 16
left, 32 left, or 16 right; the second level a shift of 0, 4, 8, or 12 left; and the third level a shift of
0, 1,2, or 3 left

NO: 367 :B<O: 162

COYENT

SHIFT RIGHT 1 TO 16 ~ SHIFT LEFT & TO 47
SONT = 11 XX XX + SHIFT RIGHT 16-XXXX (1 TO 16)

SCNT= YY XX XX (YY o 31) + SHIFT LEFT YV)OOX (8 YO 47)

LEFT 8 ss2ce: > sieer e 1o
s Bl i) 63 eI17 . . 38 BIT
A16: 75> :pe8: 32> LEEY 16 1 1174 gs2¢ 2 1 10174
QcIe; 36 :8¢0: 36> : 7013 ALEFY 2 S
DRAGS16:A«@: I6> : BB sRIGHT 36 L300 g
2
SIFTER yd SCNT<¢®: 1>
CONTROL orn 7
DY I -1 .
SCNT<0: B yd SCNT¢2:3>
¢ /
2
Z SCNT<4;6>
/

Shifter (SHIFTR)

FA2S: 10 20M @2

ERc34: 39> 10 <37

E12 BYYE PTR PE 4,

<D1:26> »3 BYYE LEN

< 30 J5>

YTE _POS (8

E6 _SHIFT CTLc&d

10173

M

Tio-13 L

H:2:Z:H:7:2 LEFT 36 e

& BIT
Z:MiH:Z:H:H . SLEFT 22 1 10174
1H:Z:Z:H: ZLEFY 18 2 @
ZiZ:H:2:27-H LEFY 9

r T €28 BYYE LEN<S:§>

C26 BYTE POS<H:5>

1 L B —— = AL a2 2

¥ L16-13 8B BYTE PTR<®:6)

26

[or") BYTE LENCO:6)
c2e E)P SUncb:11>
Hi:H:zH:H: H iRIGHY 1 .

6 81T

P

£18 nC SHIFT<9:6>

L18-13 B BYYE PYR<B:5>
SY SHIFT<@:5>

E10 SHIFY CVL<3:6
El10 5v

COMENT

LOH ROR i SHIFT ONT
LX] [] 36
o1 ® 27
16 [3 10
11 [4 9
o 1 36

L) 3 18

12 SHIFT_SIGN }

SHIFT A INO>

12 LOGIC SH]

£2C<8:6>

10164

36 MLUS OR NINUE 1

IZCO®:6>

E3© SHIFT CTL<1:2>

191204

E18 SHIFT CYL<@>

Shifter Control (SHFCTL)

1@

1¢®: 3
1018
800 :c a
10181 -j}—————
:C 8/ 3]
<4 101068
<6
4
/1 1
7 Ve
1¢4:62

36 Plus or Minus 1 (36PM1)

ste

413222 Implerhentatlon ' _ 219

4.1.3.2.2.2 Sticky Bit Generator

The Sticky Bit Generator (STICKY) is used primarily during prenormalization of floating point
numbers. During prenormalization, a number is right shifted and N bits are lost from the least-
significant end. STICKY asserts the “sticky bit" if and only if the least significant N-2 lost bits
are not all zero. (The most significant 2 lost bits become guard bits.) The need for and use of the
sticky bit are explained in [Kahan 1973].

N '\';.
L

STICKY = @ IFF B2C 1 3648 -2

ISTHEXY = 3 JFF (BZC-32)L61F ¢ 2

E1® TESY STICKY N

) 7 10187
BZC <0
7 /L2 S
<0:5> //‘ 82C<1:56>
2L SHE<®: B>

LigH:M:2:2 ifis8 ® & BIT
10168
T
n

Mo 2 if 1
s
E10 TESY STJICKY €N

82_sure

101000

. £

B2 sur<t) prme—
62 sun<os

BZ_SUnch 101098
BZ_Surc4>

BZ_SUn<e> F

L 4

Sticky Bit Generator (STICKY)

s

4.1.323 Implementation 221

4.1.3.2.3 Exponent Box

The Exponent Box (EXPBOX) performs exponent arithmetic in parailel with the operation of
the EBXALU. :

The exponent box receives operands from the EREGF and stores them for future use. Most
floating point operations thus require a preliminary cycle in which the exponents are loaded into -
the EXPBOX. During the preliminary cycle, though, the QREG can be loaded. Furthermore,
translations are not permitted until one cycle after the operands to be translated have been
received from the IBOX.

Complementers on. the A and B ihput operands conditionally complement the exponent
depending upon the sign of the mantissa (bit 0), producing the true excess-128 representation of
the exponent, regardless of the sign of the floating point number.

The EXPBOX contains a 12-bit ALU which is controlled entirely by micro-code. The A leg of
the ALU can come either from the A exponent complementer or-from the latched ALU output.
The B leg of the ALU can come either from the left shift count latched from the previous cycle,
from the B exponent complementer, or from micro-code. :

Since exponents in floating point numbers have only an 8-bit length, the 12-bit ALU allows
exponent overflow or underflow to be carried until the last step of a floating point operation, by
which time those conditions may disappear. ,

The output of the ALU can be saved in an output register (for input to the SHFCTL for
prenormalization), or can be conditionally complemented by the sign of the input to the SHIFTR
(in preparation for merging it with the SHFBOX output at the end of a floating point sequence).

The PPNCMP compares the left shift count from the SHIFTR with the postnormalization limit,
and compares the ALU output register with the prenormalization limit. The signals generated by
the PPNCMP are used in generating prenormalization and postnormalization error traps.

€20 _EXP Simc@:11) 1 12 BIT
204 " 10173
8 BIY \ a
COnRENENT / - 8
! EXP1:8 £1 1 1096 T A_EXP ABS<8:7)
c t Mu___.'

fmoxn st oy

24 H
8 BIY
COoNALCNENT
B EXP<1:-8> -1 1 1096 ¥ B EXP ABS<®:7)
o
conp
)
B EXP<@> r3 O
B0 DPe:11>
jO-3 XBOX SCNT<@:11>
SCNT<8: 5> Yo 1

/7

EL_ XBOX B SEL<®> c

<3z

PRENORI MAX<S:6)

POSTNORN MAX<@:5>

<@ [, .}

éowm
PRE

Lo O3 XPOX SCNT<B:31> o

POST

PRE V

PRE AOST NORMALIZATION
COMPARE

Exponent Box (EXPBOX)

8
. EXP Syncaz1dy

1 BIY

1014

T R €16 EXP N

EXP_ St <1

EXP_SUm<2>

EXP__Sun 3> »

B or cow, |

SHIEY A INCO)

»
14

10196 EXP<B:7>

[§ S (I e A

LET D 8E THE EXFONENS D FFERENCE
—0> (PRENDRIt TRX L) FF
-0 (~PRENORN PAY ~1 IFF
D<PRENORIY MRX +1 IFF
DCPRENORIS PRX IFF
{O>PRENORN MRX) L IFF

PRE U L

MOTE: ADDING 64 FOR ARI NE TIC (OMPARE
CONRLENENTS THE NOST SIGNIFICANT BIT

o ei—

@ EXP S1M¢Y>
101068 ™
A
20 DE sunce:lye /
L
L
8 BIY
COMPLEMENT L
. P . 10196
Z:Z-"Rf‘°-5’ 1 T
(4
cornP
SCNT <@ .
|
10106R H
8
SCNY<1:6> /
L

PAG NI TUOE
cone oy

o 101068

Y ¢
l’/
o’ an
mcun
) POST UL
101068
G

H:P0OSI<@:6)>

Pre/Post Normalization Compare (PPNCMP)

ET ¥

224 | Implementation | ' 4. 1.3;2.4 .

4.1.3.2.4 36 Bit MUX Merge

The 36 Bit MUX Merge (MXMRG), determines which of eight data paths is delivered as output
to the EREGF or to the IBOX result register. The eight data paths are:

- The lower 36 bits of the output of the 3INADD shifted zero, left one, right four,
or right one bit. The left-one shift is used during divide, and the right-four shift
is used during multiply. The upper four bits of 3INADD are needed only during
multiply operations.

- All zeroes.

- The output of SHFBOX.

- The output of EXPBOX.

- Miscellaneous fields from the EBOX.

The MXMRG also allows selective merging of each quarter-word of the SHFBOX with the
output of the 3SINADD. This capability can be controlled entirely by micro-code, in which case
. the micro-code can select the source of each output quarter-word independently, or by the address

. bits of the destination, which are supplied by the IBOX. Merging according to the address bits
of the destination is necessary for quarter-word and half-word operations in which the result
must be shifted into place and merged into the destination word.

The MXMRG also allows the exponent path to be merged with the output of the SHFBOX for
-producing final floating point results. In this case, the sign-extended mantissa comes through the
. SHFBOX and is merged with the exponent. :

0<9:8> \

A0 AR Y
1<0:82
2:0:8>

4:0:8>
5¢02:8>

6¢0:8>

N & s WwN

2¢8:8>

e eaned

2019:12> °
1<18:12> ts
203D 2
310:12> 3
4<10:12> "
_s_qe;:?» 3
<10:17> -
g

2¢10:37> |

FERGE e J<19:17)

9¢18:26> \

- {]
€18: 26> N
£418:26> >
<18: 26> 13 ® 8I7T
€ T
418:26) 4
2
6<18: 26> 6
618:26) "
€18: 26 » o

H
nRg o 0
H

36 Bit MUX Merge 1/2 (MXMRG1)

<

h L

ST

€12 DEST LOM ADR<A

€12 DEST LOM ADR<O)
: A 1e102n ‘
€12 OEST LOM ADReY>

£12 MERGE_OH3

12 DEST L OM ADR@>
A e1en |
: F

E12 MERGE QM2

191028
C12 DEST LOW ADR<E)
’ < b3

E12 MERGE QM3

E12 _AUTO MERGE

1010288
J

‘36 BIT MUX Merge 2/2 (MXMRG2)

4.1.32.5 ' Implemenfatlon 227

4.1.3.2.5 Q Register

The Q Register (QREG) is a 37-bit shift register (36 bits plus carry out of the least-significant
bit) which- is used to perform multiplication and division, and which also serves to hold
temporary values. During multiplication, the QREG holds the multiplier, and during division the
QREG holds the dividend.

The QREG is built of ECL 10141 universal shift registers. It has the capability to parallel load,
shift right four, shift right 1, shift left one, or hold, all under micro-code control. The right-four
shift is used during multiplication, and the left-one shift is used during division, as follows:

- Shifting right by 4. During multiplication, the QREG is initially loaded with the
multiplier. The EBOX uses a multiplication algorithm that examines the
multiplier and produces four bits of the product each micro-cycle. Each micro-
cycle the QREG parallel loads from itself, moving the higher 33 bits into the
lower 33 bits. This is physically equivalent to shifting right by 4. The 4 most
significant bits loaded. into the QREG are the 4 least significant bits coming out
of the ALU. During a multiply these are the 4 least significant bits of the current
partial product. After the last cycle, the QREG contains the low-order word of
the product.

- Shifting left by 1. During division the Q register is initially loaded with the
dividend. Each instruction cycle one new bit of the quotient is shifted into the
least significant bit of the Q register.

£12 Q 1OOE<1)>

£12 O nMOOE<2>

/? o

'S -
1 s2
DP<H: 3> 4 817
4 BIT SHIFY
10168 Tt REG Q®: 3>
- 10143
D4<@:3> ®
oR
S =3
b} A
A"
2o |
Q<3
R -
Qear
1
e 1 82 .
DPca:362:2 ° 32 BIV
I3 BIT 36 SHIFT
10168 <@:36) Z DPON<@: 35> REG Qca:35)
° 10141
Qe 32> 1
LI or
[+
D,
£12_0_nooE<e>
T17 ¢ COND SREPATNDER SIGN QIN . B -
l101068 N
[
1 BIV
' REG
yd DPON<36> T 9¢36)
7 2
(=3
Va

Q Register

(QREG)

&

4.1.3.3 Implementation 229

4.1.3.8 EBOX Control

‘The EBOX Control (EBXCTL) includes all control logic and ‘miscellaneous logic. It can be
decomposed into the EBOX Sequencer (ESEQ), the Fixup Generator (FIXGEN) the Status
Registers (STATUS), and the EBOX Transmitters/Receivers (EXCVR). .

The ESEQ provides all sequencing control.

The FIXGEN produces the fzxup sngnal During some operations, such as floating point add, the
cycle which is normally the last execution ‘cycle may, in rare instances, generate a condition-that
requires further processing. In that case, the FIXGEN raises the fixup signal at the last possible
instant, causing the EBOX to lose one cycle before continuing with the operation. If fixup is not
asserted, then the operation will complete without wasting any cycles. This fixup capability allows
conditions generated during the current execution cycle to affect the flow of control, without
requiring that the next cycle be wasted to test conditions.

STATUS contains processor and user status registers.

The EXCVR handles receiving and transmitting most IBOX/EBOX communication signals.

FIXUP GENERATOR

EBOX SEQUENCER

EBOX Control

EBOX
TRANSTI] TTERS /RECE 1VERS

(EBXCTL)

STATUS REGISTERS

[

41331 ~ Implementation 231

4.1.3.3.1 EBOX Sequencer

The EBOX Sequencer (ESEQ) controls the sequencing of the EBOX. The ma jor components of
the ESEQ are the 12 Bit Branch Address Merger (BRADRM), the EBOX Branch Condition

" MUX (EBCMUX), and the EBOX Control Store (EBXCS).

The BRADRM determines the source of the next micro-instruction. The possible micro-
instruction address sources include a micro-subroutine return address, the IBOX-provided
macro-operation starting address, and the micro-code branch address. Since micro-instructions
are read out a full cycle before use, BRADRM must be set up approximately 1.25 cycles early.

The BRADRM allows an N-Way branch (N = 2, 4, 8, or 16) on the low-order SHFBOX output,
the low-order 3INADD output, the FIXREG output, or the conditions generated in the CBOX.

When FIXGEN asserts the fixup signal, a special branch address is forced into the micro-
program counter to initiate a fixup sequence one full cycle later.

The control logic in the ESEQ allows any address input to the BRADRM to be used for a jump -
or a jump to subroutine. -

The EBCMUX determines whether the branch condition being tested by the micro-code is true,
and if so, allows the micro-program counter to be loaded, otherwise the micro-program counter
increments. :

12 @17
17 Fhare L 101060
°
RET_ADR<8:11> - o 12 BIT
X START_ADRDI13)] s 12 BIT CW
IR ARG 11> e 10016
SHIFTC R : 36> . T b T
Facie: 391 4 " ’
FI>% G<0: 35 & o
MU COND(O: 3> ; A CLR PE
N SEL EN |
EBOX BRANCH e
J COMDITION
E DR _NIAY<O: 1)
137 £naw

E_BR DCST<O:27

Z:H:2

X _KILL EBOX

E_JSR L

e 3BIT
10168
T
o
LI
3 l -
> ° ‘ €12 KILi EPOX
FERRTEY- 1
pcc x
112 o>
3

STORE

I2 4

<o
12 BIT CTR 128 X 164
10016 RAR
. . 101450
T s
Xawree a_u 5 ‘
L
73
4 817 CW
- 10136
1 T
"
X 5 c
i)

EBOX Sequencer (ESEQ)

g

(—

413311 Implementation ' o83

4.1.3.3.1.1 12 Bit Branch Address Merger

The 12 Bit Branch Address Merger (BRADRM) allows N-way (N = 2, 4, 8, or 16) branches on
the value of any of four four-bit vectors. Depending upon N, the selected four-bit vector is
shifted into place and substituted for the low-order bits of the branch address from the micro-
code. ' ' o

7]

[

8<8: 2> PY
8 8IT
1w8:2>
10
2]
38>
SEL<®)
SELC]?
<P
s>
18197 <2
e
I
8811 \g
1:8:13> 1
£8:11> 2
803> 3 &
10164
BR _ADR<O: 2> ; MHFRGE ADR< 3> - v
-]
BR _ADR<O: 1) : NERGE ADR<2: 3y s
BR_ADR<@> ; MERGE_ADR<1 23> P
" .
RGE_ADR<B: 3> > e
8
333
S0.19:2 e 3 e
10168
T
H:N¢@: 1) . 2
1 s N
. L
SEL <O

12 Bit Branch Address Merger (BRADRM)

'

4.1.33.12 | " Implementation - | 235

4.1.3.3.1.2 EBOX Branch Condition MUX

The EBOX Branch Condition MUX (EBCMUX) asserts the parallel load line on the micro-
program counter if and only if the condition selected by the micro-code is true. EBCMUX allows
any of 24 conditions to be tested, and allows those conditions to be inverted before testing. -
Testing of conditions for branching cannot be done during the cycle that the tested conditions are
generated, but must be done during the next cycle, since the micro-program counter is loaded one
cycle before execution commences. : '

100K

C12_PAUSE_EROX ..\
naNY Z L s
nONY U L R
Lay 2 4 18T
10164 T
AT .
- n
REPITITION r
comTER sanz
col; COUNT_DONE .
R
ey
!
£ BC_sEL<1s
101060
1
—~—|
s N Bownos | —
N .
813000 suZL N
T meL i sen
Zoaevem |, 10104 |
. su
PRE Vb — N a4 s
s LE
POST U L 2 e
FLOAT FIX L
O N 5 1817 foa Fix L I
10164 |
0P vy ‘ >
3
[3 '/‘
—_——e
——> | En
£ 8C SELH:® o
E_BC SELep> o3 |‘°‘°5“
L_z_/
>

EBOX Branch Condition MUX (EBCMUX)’

E_BC SEL<® ;INU

BR OGN INV COND

me11e

J17 FIXUP 23 L

T2 FIxuP /3

U

101 90

PEL

4.1.3.3.1.2.1 .. Implementation ' 239

4.1.3.3.1.2.1 Repitition Counter

The Repitition Counter (REPT) allows the micro-code to contain "FOR" loops. REPT can be
loaded from either the 3SINADD or the micro-code, and can be counted down andtested under
micro-program control. REPT thus allows control constructs in the micro-code such as "branch if
" zero (nhon-zero) then decrement”, and "branch if zero (non-zero) then load". ’

Fac32: 39

££.1C REPTCO: 7>

[§

REPITION COUNTER RLLOWS:

RICROMORD SOURCE —
BRANCH IF ZERO/NON-ZERO THEN LOAD

'BRANCH If ZERGANON-ZERO THEN DECREMENY

DATA PATH SOURCE —
SET UP DATR 1N DATR PATH
BRANCH IF ZERONON-ZERO THEN LORO

BRANCH IF ZERG/NON-ZERO THEN DECREMENT
.

Repitition Counter (REPT)

TI6 L

4.1.33.1.3 | Implementation ' 239

4.1.3.3.1.3 EBOX Control Store

The EBOX Controt Store (EBXCS) contams the EBOX writeable control store various micro—
instruction pipeline registers, and EBOX Parity (EBXPAR). ' :

Control store for the EBOX is two-level for reasons of economy. The first level is addressed by
the micro-program counter; it is 4K words deep by 70 bits wide. Ten bits of the output of the
first level become the address bits for the second level, which is 1K words deep by 140 bits wide.
In general, signals which are needed long before the micro-instruction execution commences must
be located in the first level, and signals which are not needed until the execution starts can be
located in the second level. This two-level control store allows the sharing between micro-

instructions of subparts of common control words. With the aid of an intelligent micro-code '
- assembler, the control store appears to be uniformly 4K words deep. '

EBXPAR checks the parity of control store words and raises an error signal if a parity violation
.is detected.

]

PARITY WORD(129:209>

3
¥
-
2
¢

|

T E12¢®: 492

% (]
Z £scee:339 |, . £10 ®: 89> // £10¢40:

T10 T2

-»
Z E18¢0:39>
EBOX PARITY . va -

42 BT

«2 . .)
yd ES¢B: 49> nx PARITY, <28: 119> @41’
~ Bs L | RITY SORDPB: N> . EL<O: 41

7 v

PARITY <28 77> <®:7>

\\Q

EBOX RAWt

ARRAY € EBOX CS <78: 209> E£5<H:139)
X _Ran DAT A ®: 127

R € EBOX CS <0:69) £18: 69

f<@:11>

T PARITY MORD(O:6P £60: 69>

X _PRINGRY R ME L [3

Té6
X_SECONDARY ROM MWE L

£E<@:49)
7 -

. : _ EBOX Control Store (EBXCS)

0/‘72‘.{’

J<®:12> Dlce32> 208 X .
- RAN
1c®:12> < » <9:19> 21101 £10:19) ;. <0:9
E. 163> DI¢O: o~ ¥ H va £40:9
pELRES I 2o 735 .
1<8:16> DN<E4:49> A__ME_CS //l.
Ly \ oo £10:19) € SEC AgRce;P
13
=
208 X «
RAN
<28:39) h 2110-3 ¥ £29;: P>
1
f__HE
10 B
801> /4553;)1»
/' 2‘0':“«
'mg) [1)%1 23 h 2110-1 T E<a0: B9
//gq» 2
f__ue
108 X 4
RAN
DL6D: 69> h ane-1 E<eB: &>
3
A__WE_CS : —
{3
SECONDARY
RAN ARRAY
1<©:12> 1 A ¥ £Sc0:1 >
. 4
coment L0 4 “%
LORDING *[
208 X 4 198 X
RDORESS 4 2
HRITE EMO L) 2
CHIP SELECT 1 1
*
2L

EBOX RAM Array (EBXRAM)

(Pe=

H - € 18 BI;\

10197

1@:17>
. 3

corEN

LOW REQUIRENENTS OF RAM MEMORIES ARE RS FOLL GNS:
FOR 188 X 1K RAM—

ADORESS LINES 1 1L0AD

KRITE ENARRE LINES 1 LORD

Aee:9)

. EBOX Secondary RAM Array (EBXSEC)

188 X 1K RAM
; 2neiwocs T¢®:17>
.
A uE
188 X 1K RAN
; 2Ne1wocs T¢18: 36>
1
A
168 X 1K RAN
; Mmerwocs Te36:53>
2
T
188 X 1K RAN -~
g 21161 wo s Y<Ba; 212
3
| T
188 X 1K RAN
g 2Ne-1 wocs o Y<2p:09>
-
a uE
188 X 1K RAN
; 2@neiwocs o T<90:1082>
3
| T
168 X 31K RAN
g 2181 H0CS o 7<108;126>
Py
a uE
188 X 1K RAM
g 21181 WO S o . T126: 1432
?
A uE

fad=id

¢

20 BIT
PARITY CHECKER

PARITY WORD<®:69> 1

parivy evmor L |

pec & & CE PARTTY ERROR

‘0 .'
5
"
e
u
"

140 BIT
PARITY CHECKER
xrRESEVEPOX

Iy <79 > 1

pec € o> xmp@nmmg

EBOX Parity (EBXPAR)

he

244 | Implementation - 41332

4'.1.3.3.2 Fixup Generator

The purpose of the Fixup Generator (FIXGEN) is to sometimes assert the fixup signal and cause
the EBOX to continue with the fixup micro-instruction sequence instead of starting a new
operation sequence under command of the IBOX.

During execution cycles' in the interior of a micro-instruction sequence, FIXGEN can store
detected fixup conditions in.any of four 1-bit registers, and can use the contents of those registers
to assert fixup on the (tentatively) last cycle.

The Fixup Multiplexer (FIXMUX) multiplexes the fixup condition chosen by the micro-code.
The output of the FIXMUX can be used to cause fixup during the current cycle, or can be stored
for use later.

FlIxupP

e
T
F
3
1 8IT
REG
1013
%% o
"
.
£12 FIXWP REG® QK EN L o> ‘ x
ye! .
3
1 a1y
o a
10131 :in
1 T ‘
[L] |
pcc 3 _-o
€12 FIXWP REGI QK EN | bes @ & e
re R |
£12 FIXP REG TEST
h]
5
3
3 817 £
REG
PYSE
; Yeve o)
c . ‘
. 2 £12 FIXIP EN
° o c|25x1u TBOX § 101068
12 FRAp REGe QK ENL 1 < 14 LAST EX CY -
® c .
]
° b * . d C26 ABERT CYQLE
REG J12 FIae 1 3
10131 o7 Lz oy e o °
1 T 10131 1013
11447 L hee. 3 b .
E12 FIXuP REGI QK B3 L) b oo ‘ & pce 1 oo pec 3 o 6 QBORT
B ®” J20 Y26
Pt o T o -
T2
* .

. Fixup Generator (FIXGEN)

D

su

N) iSus

101068

SM IN

COMMENT

INBOUNDS + NC > X2 @

-

[V

b

1 81T
10164

E12 FIXUP REG SEL <O

101068’

[

ANCUER °
z QL uAYs s
ERE VL 3
PANT U L -
sz iBAD ONES COUNT
SH_IN BOLNDS | 6
LOAT F1x
fLoa [>
s
EXP UL
e Z L
FOST v oL

E12 FIXUP REG SEL<®:2>

1 BIT
18164

EN

Fixup MUX (FIXMUX) '

.

T

41333 Implementation 247

4.1.3.3.3 Status Registers

The Status Registers (STATUS) contains the processor and user status registers. These registers
can be conditionally loaded under micro-program control.

zc

N _STATUS __ COMD STATUS<®)>

7/1

J

. £ _STATUS COND _STATUS<] >

2]8e)e
NG

) ‘ IS<3y ‘
-
‘ ' CO_SIATUS _COND_STATUS<3» ;
EL_nC_CoNDo: |
!
t
12 _COND STATUS SEL ‘
£12 COND STATUS PE L
6 BIT
) REG
R<30: 36> 1 18176 o i &5 H 3
A
« .
me_re____l
120 181048
c : .
6 BIT
REG
R<30: > 3 19176 4 £051)
8
cx
2
. ’ E
£312 POST MAX PE |
178 101044
[

Status Registers (STATUS)

-,
o

4.1.3.34 ‘ Implementation . 249

4.1.5.3.4 EBOX Transmitters/Receivers

“The EBOX Transmitters/Receivers (EXCVR) receives signals from the IBOX and transmits
signals to the IBOX. Depending upon the fixup signal generated by FIXGEN, EXCVR will
.conditionally assert OPS TAKEN, RESULT, INTERRUPT IBOX, and DONE on the last,

execution cycle of a sequence.

'

X_BRONCH TAKEN X _EDOX _CONTROL <@>

X _BRONCH COND X EBOX CONTROL ¢1:32

X AOP _LOW ADR<O:1) X FHOX CONTROL <4:5>

X BOP LOM ADR<®:1)> X FROX CONTROL<6:2>

X DEST LOH ADR<B:1> X_EBOX CONTROL<B:93

X _PRUSE EBOX X _FBOX CONT <18

®_EBOX CONTROL<9: 18>

A e

R¢B: 36>

12 BIT

101726

€12 FEOX CONTROL(2:18)

-
n

EBOX Transmitters/Receivers 1/3 (EXCVRI) |

X ESILT DATRG: 36>

T v

€12 _£B0X CONTROL <& C12 BRANCH TAKEW
€12 EBOX CONTROL<1:3)> C12 BRANCH COND<®:2)
€12 EBOX _CONTROL<4:6> Ci2 A OP_LOW ADR<®:1>
€12 LBOX CONTROL(6:2> €12 B OP LON ADR<®:1)>

€312 EBOX CONTROL ¢8:9)> €12 DEST LOH ADR<B: 1)
12 _EROX CONT! <10 2

12 _BRANCH COMD<®>
€12 BRANCH COND<1) C12 BRANCH EQUAL
€12 _BRANCH COND<2> : C 2}

asee

Y12 ﬁ FE L o

15 1]

DC1

(]
101

ofp——SlaLBsy EX CYOE L
pui & O V.

EBOX Transmitters/Receivers 2/3 (EXCVR2)

(5

EDOX C5<0:35 : \

.
EBOX CS<36: 21> .
EBOX CS<7P: 107> 2
EBOX C5<196:143> 3 36 BIT .
10164 i X_EBOX READ HORD<®; 36
EBOX CS<144:179>
*0n

EBOX €CS<180:218>:7¢6

L4

PC<@:11>: 7024

[

EBOX Transmitters/Receivers 3/3 (EXCVRS3)

{

4.1.34 : Implementation . 253

4.1.3.4 Timing

The EBOX is controlled by the IBOX, which specifies the operation and the operands for the
EBOX. The IBOX provides the EBOX with the address of the first micro-instruction in the
EBOX’s control store. The EBOX performs the operation by executing the sequence of
instructions from its contro] store beginning at the address specified by the IBOX. At the
beginning of the last micro-instruction cycle of an operation, the EBOX raises the DONE flag.
In response, the IBOX prepares the next address and operands of the first instruction of the next
operation. This section describes the timing of a normal macro-operation. .

A macro-operation consists of a sequence of micro-instructions as shown:

| FETCH. READ | EXECUTION | WRITE

. | FETCH READ EXECUTION | WRITE

FETCH READ EXECUTION ceves

FETCH READ cebes

. «——Instruction—> > time
cycle

Sequential micro-instructions overlap; during a given instruction cycle, three operations occur in
parallel: - , :

1. During FETCH, the EBOX fetches the next micro-instruction from its control
store and places it in the pipeline register.

2. During READ, the EBOX reads operands from its EREGF.

3. During EXECUTION, the EBOX executes the current micro-instruction from
the pipeline register. The ALU produces a result by the end of the execution
cycle. If the DONE bit of the micro-instruction is set, the DONE flag is raised at
the beginning of the cycle.

254 Implementation 4.1.4.4

During WRITE, either the IBOX or the EBOX may write into the EREGF.
| 180K WAL and 180X WR2 l

or

I 1BOX WR1 and EBOX uR I

or

I EBOX NR I |

] ngtruction cycle >

The purpose of an IBOX write is to provide the operands for the next macro-operation. During
the first half-cycle, the IBOX writes operand A and B into the same address of the two register
banks. The register location written into is determined by the EBOX.

During any instruction in which the IBOX is not providing operands, or is providing only oﬁe
operand, the EBOX may write data into itt EREGF. The EBOX write also occurs during the
first half-cycle. ' ‘

At the end of an execution cycle, the result: .

- is always available to be used as an operand for the next execution cycle, and

- is simultaneously written into the EREGF during the next execution cycle {unless
two operands are received from the IBOX for the next execution cycle).

4.2 ‘ Implementation ' 255

4.2 lmerconnection Network

The processors are connected to memory by a serial/parallel crossbar interconnection switch (See
Figure 2.1-1). Data is transmitted 24 bits at a time through the switch, taking two cycles per data
word transmitted. Once it is through the switch, it is then transmitted fully word parallel to the
memory’s, since the relatively slow TTL logic in the memory's can not handle the high speed of
the switch.

The memory is divided into 16 Block Storage Modules (BSMs). The BSMs are interleaved 4
ways on the low order bits of the real address word. When a processor does a read or write, four
words are transmitted, except in cases where the data is tagged as not cacheable, in which case
only one word is transmitted. Normally the address is transmitted once and the two low-order bits
are permuted in order to obtain the addresses of four consecutive words in memory.

With N processors, the common store resembles an n-port memory because of the interconnection
network, the structure of which allows each processor to simultaneously and independently access
different BSMs. When two or more processors try to access the same BSM, the conflict is resolved
by the memory contention control logic. This logic ensures that no processor can access a BSM
twice before another processor desiring access can access it once. This effectively solves the
deadlock problem which plagues some multiple processor systems, in which a higher priority
processors locks out lower priority processors for an indefinite period of time.

Each BSM has its own memory contention logic, the inputs of which are the request lines from
each processor and the outputs of which are the select lines of the interconnection network. The
request lines are activated by control logic monitoring the address lines of each processor. In a
sixteen processar system, four of the address lines would be input to a 4-to-16 line decoder. The
16 output lines would indicate which of the 16 BSMs the processor desires to access.

As soon as a particular BSM becomes idle, the mer;lory contention logic latches the 16 processor
request lines for that BSM. It then proceeds to service the queued processors until the memory is
again idle. The 16 output lines of the latch go to a 16-to-4 line priority decoder which
determines which one of the processors is to be serviced first. The output lines of the priority
encoder are connected to a latch, and to the select lines of the interconnection network, which
routes the data from the selected processor to the BSM selected. At the end of a memory cycle
when one processor has been serviced, the latch is released and the request is cleared.

The priority encoder then elects the next processor to be serviced on the basis of the new data in
the latches. This cycle continues until the latch is empty and all processors have been serviced.
At this time the MEMORY IDLE line latches the next batch of processor requests and begins the
next round of servicing processor requests.

0 QT<d:4)

1 QTR 24>

2 UT<a:24>
3

QIT<A: 24>

4 QIT<a: 24>

5 _QUT<0:24>

rMoc

6 QIT<A: 74>

PROC

Z QT 24>

PROC

8 _QIT<@:24)

9 WI<A:24>

10 OUT<A: 24>

11 _ OGUT<D: 24>

mocC

12 OUT<d: 24>

PROC

13 OUT<D:ra>

PROC

14 OIT<D:-24>

PROC

16 _OUT<d: 24>

bl
-

TP Y YV ¢ op vV D VOV Y

¢« ® N & N s W N [

s

12

13

16

ne e IN<O: B>

" 7 1 INCO: 493

02 T 2 INGe: 0

"3 W3 AN B

"nae MM 4 INCO: 49>

"E nin e TNGe: 4

neé G INA: 4>

PROCESSOR-MEMORY nz nin 7 iNo: 49>
COMMUNICATION ne nn 8 Inco: 22
ne M 2_IN<O: 49

n e M 10 INCO: /)

" 11 TN 11 INCO: 49>

* n 12 n 12 INCO: 49>

"3 nM 13 INCO: 4P

" 14 ron 14 ince: @

" 16 B 16 INCKD: 4>

Processor-Memory Cross-Bar Switch (PMCOMN)

75

PO <8:24

v

1 _<2:24)

P2 <@:247

£ 3 <o:20

P 4 <0:24>

PSS <8:24>

P 6 <@:24)

P 7 <B:24

P8 8:24>

P 9 <a:24)

P10 <9:24>

P 11 <8:24>

P12 <8:24>

P 13 <2:24>

P 14 <B:24>

P16 <0:24>

HEM ® ACCESS<8:23>

W N

»

st SJROCESSOR

rs: > SWITCH

PROCESSOR

es1 sl NTERFACE

nrn 8 ACCESS<8: 23>

© PSI ®
1 e 3 ACCESS<8: 23> psy 1
2 nEn 2 ACCESS<d: 23> 12
3 N 3 ACCESS<O: 23> sy 3
a nErt 4 ACCESS<9: 23> PsK 4
€ nEN 6 ACCESS<H: 23> PS1 6
& N 6 ACCESS<D: 23>

2 e 7 ACCESS<@: 23>

| PSE 19

g O N & O

eyt 9 ACCESS<e: 23

 EEEEERREEERREER

%]

]
(=]

PSO D:23)
£SO 1_<@:23>
PSO 2 <9:23>
S0 3 <@:23>
PSO 4 <B:23>
Pso <@:23>
$0 $B:23>
PSO <9:23)>
PsSo @:23>
icil "] (B3>
PSO 18 <9:2D
PSO 11 _<9:23
PSO 12 <9:27>
PSO 13 <8:2>
PSO 14 <0:2D
PSO 15 <@:23

¢

nER 18 ACCESS<A: 23>

TEN 13 RCCESS<8:23>

N 13 ACCESS<H:23>

2 e 12 ACCESS<@: 23>

N 14 ACCESS<@: 23>

SI 9

PSY 18
P81 13
PSE 312

PS1 13

W 16 ACCESS<e:23>

P81 14

PS1 186

1o SUWITCH
es1 » MEMORY
1 s INTERFACE

833383

PSO

PSOo

PSO

2 _<o:

1 ¢<O: 49>

2.49: 4

3 <B: 4>

n

4.<a:

10: 49

<9D: 4>

<9: 42>

3
6
2 48: 4
8
b

16 a9

n

18 <O :49>

n

1]

n

11 <0 :49>

12 <9:49)

13 <& :49>

14 <O :49>

n

15 <0 :49)

Processor-Memory Communication (PMEMSW)

Ay,

N @ OLcd: 49> ne Pe PROC 8 INB: 4>
nwn 1 ot<o; 49> "1 P 1 PROC 1 TN@: 24
MmN 2 oul<d: 47> na pa FROC 2 TN<O: 4>
M 3 0<o: 492 "3 P33 PROC 3 TH®: ™M)
HEN 4 OUT<@: 49) na P4 : PROC_4_TN<O: 24>
MEN 6 _O1fi<O: 49> & PE PROC 5 _IN<O: 24
HEM & OUI<D: 4V ne) P& PROC_& 1N<@: 74)
rn 2 oo s n> MEMORY-PROCESSOR . rroc 7 ez
NN 8_010<9: 49> ne CDMNUNICATIUN e 8 PPROC_ 8 IN(O:)
MmN 9 oOUT<o: 49> ne P9 PROC P IHCO: MO
MY 18 QUT<a: 49> "8 P 10 PROC 10 IN<©®: 24>
N 11 QI1<0: 49 n 1 P11 PROC_ 31 TH<O: 24>
wWn 12 QUI<0: 49> niz d P2 PROC 12 IN<O: 24>
O 13 _QIT.0: 49> "3 P 13 PROC 13 INCO: M)
Mn 34 QITcH: 49> " 14 - P 14 PROC 14 IN<®: 24
w15 QiT<e: 49> n 16 P 16 PROC 16 IN<O: P4

M emory-Processor Cross-Bar Switch (MPCOMN)

P

£SE

n <O: 49 nsi
"y <3:49> ns1
ne <8:49> ns1
n3 <a:49> nsi
" 4 <B:49 nsy
a <0: 49> ns1
fn <0:49> nsi1
n $B: 4D nsi
n 0: 49> nsi1
n <B: 49> ns1
110 <Q:49> ns1
[a] 19: 49> nsi1
n_12 <2:49% nsi
113 <D:49> nsi
" 14 <03:49) ns1
N5 _<o:49 X

2
3

a

® MEMORY
* SWITCH
:INTERFACE"S

123
14

16

SERVICE @ ¢9:23

SCRUICE 3 <®:273)

SFRUICE 2 <08:33»
3

SCRUICE 9:23y

iz

SERVICE 4 <©9:273

SERVICE <@: 23

StHYICE @:23r

SITRVICE £9:23>

3

&
StRVICE 27 <@:23>

8

b4

SCRVICE @: 23>

SERVICE 18 <6:23>

SIRVICE 11 <©:23)>

nsI

nsx

SERUICE 12 <0:23>

SIRVICE 313 <8:23)
SCRVICE 14 <&:23>

SERVICE 16 <8:23>

nsx
nsy
nsx

nsi

Memory-Processor Communication (MPRCSW)

L4

W

-

® MEMORY
“PROCESSOR
7 SWITCH

L4

11

12

3

14

16

©0:23>

$0:23>

<9:23>

<@:273>

<9:23>

gggee

»

<@:23>

<9:23>

<9:23>

“PROCESSOR ™°

N o

20:23>

7 INTERFACE ™°

0:23>

18 <9:2D

<B:2D

12 <@:2

13 <0:2

PO <B:243

P 1 <0:24>

P9 <&:24)>

P 10 <0:24>

P 31 <8:24>

|

P 12 <0:24>

g1eds

14 <&:23

]}

15 <0:2

Y

EEEEEEEN

P_i3 <9:24>

P 14 <9:24>

P_15 <@:24>

i

PS1 @ <@:24)

*
PSO & «<@:23>
ro R B REGIUST & <@
R REUESY 1 <&
R 2 REQAK ST 2 <8
R 3 REQUEST 3 <@
R 4 REGKN ST 4 <O
R & REQK ST 6 <0
R & RGN ST & <@
R Z REGUH ST 2 <&
Z:‘I)sod RSB REMKNST 6 <>
INTTRCE R9 RN ST 9 <O
R HEUE'ST 108 <>
R 11 REQUEST 11 <03
R 12 REQESY 12 <O
X R 313 b RERA ST 13 <@
® 1 R WX ST 14 <&
R 15 Rf QUK ST 15 <@
Bsn BSACEL_@ <@:3)>
(41

PSI 1 <2:24>

st -2 500 IR, - sk ARSI

SHITCH
INTFACE

Pl

T ¥ ®» ™ XX
20O N & T AW N

» ®» R P XD oy omom ™
-
-

-]
3

PSO 1 <®:23>

PSO 2 <6:23>

REQUEST © <13 P e REGUEST @ <2
REQUEST 1 <) 21 REQUEST 1 <2
REQUEST 2 <1 R 2 REGUEST 2 <2>
REQUCST 3 <13 ” 3 RTGUEST 3 <2
REMXEST 4 <1> R4 REQUIESY 4 <2>
PIUNST & <1> R 6 R!‘Ol.l»'s'l' & <2>
) REQIN ST & <1) R & REHUNKESY 6 2>
REQUN ST 7 <1> R 7 R QU ST 7 <2>
REQANST B <1> ?:‘I)(Y:C" 28 REQUEST B8 <2>
FEQUFST 9 <13 INTPRCE REGUFST 9 <2
REQESTY 18 <13 ‘R 10 REQUEST 16 <2>
RCQUEST 11_<32 - REQUEST 11 <2
REQUEST 12 <32 ” 12 REQUEST 12 <2
REQUEST 13 <1> X R 13 RCAEST 13 2>
REQUEST 14 <32 R 14 REQGUEST 14 <2>
REGUEST 16 <13 & 16 REQUEST_16 <2)
HSNSEL_ 1 <@: 3> a5 AsnSEL 2 <@: 3>
Px

PS1 2 <B:24>

Processor Switch Interface 1/4

(PSINT)

3

SHITCH
INTFACE

(41

T M x owm o™ ™D DA NN

v 0 N & N A W N [

-
L]

R 13
RYy4
R 15

asn

9.

PRS0 _3<0: 23>

REQNFSY 1 <3

REQESY 2 <3

REQEST 3 <3

REQKST 4 <3

REQESY & <3

REQKSYT 6 €3>

KREQKEST 7 <32

REQNEST 8 <3

REQESY 2 <3>

KREQUEST 10 <3

REGUEST 13 _<3>

REQLEST 12 <3

REGLEST 13 <33

REQIEST. 34 <3

REQIFST 16 <3»

PSSl 3 <@:24>

———e —_— e - - N
PSO_4_<9:23> PSO 6 <8:23> . PSO & <0: 23>] PSO_7_<@:23>
P e REOGUEST ©_c4> P e REQUEST @ (6> P el RECAEST 8 <6 e REQNST & <2
"3 MEQUEST 1_ca2 /1 REQUEST 1 <S> ® 1 REQUEST 1 <6 e 1 REQEST 1 _<7>
w2 REQUEST 2 <4> R 2 RCQUEST 2 _2 REQEST 2 <63 @z REQEST 2 <2
” 3 RTONST 3 ca> ® 3 REQUEST 3 <6 "3 REQUEST 3 <63 . REQEST 3 <7
® 4 HEQUEST 4 <4> ” < REOQUEST 4 <85> - 4 REQUEST 4 <6) 4 REQFSY & <>
re REQLST 6 4> Qe RYOQUEST 6 <B) - FEQUEST 6 <6 &s REGEST 6 <7>
R6 REQGUWSY 6_c4> e REGUEST 6 6> "o REQFST 6 <62 fe REQEST 6 <2
. KEQUEST 7 <42 . REGUFST 7 ® > RYGUFST 7 <8 & 7 REQESY 7 <2
e vo REQEST B <42 e 8 REGUNST B <6> e ra RYGUEST B <62 e 8 REQEST 8 P>
INFRCE PEQUIST 9 <43 At REGLEST 9 <E> INTFRCE o REQUFST 9 <62 INTFRCE REQEST 9 <2
R 10 REQUEST 18 _<4> ” 10 REQUEST 10 <63 o 1o REQUEST 18 &) ® 10 REGIEST 1@ <2>
® 11 QST 31 <) ” 11 RLOUEST 11 <82 ” 11 REQUEST_11_<&> 2 11 REQUEST 11 <7
R 12 REQUEST 12 <4 R 12 REQUEST 12 R 12 RERN ST 12 <62 R 12 REQLESY 12 <7)
% R1 REQUEST 13 <Ay % ®13 RLOUCSY 13 <6> < ®13 REQUEST 13 <62 % R 13 . REOUST 13 7>
R REQUEST 14 ca> ® 14 REGUEST 14_<6> R 14 REQUEST 14 <62 14 REGUEST 14 <7»
@ 16 REQUEST 16 <42 ” 16 RCOUEST 16_<6> ” 16 REGUEST 16 <6> . REQUEST 15 <73
. gen SUMSEL 4_<@:32 ssn BSNSEL 6 <@: 3> esn ‘ BsSnsEL_6 <@:3> ’ s BSMSEL 2 _<0:3>
N Pl Pl PI
PS1 4 <@:74> j PSI 6 _<@:24> | PSI 6 <0:24> | © pSY 7 <o:20 |

Processor Switch Interface 2/4 (PSINT?)

PS1 8 <9:24>

SMITCH
INTFACE

PY

PSO 8 «9:23>

R @ REGREST @ <8>
R 1 REOIEST 3 <83
R 2 REQINST 2 <8
R 3 REQUUST 3 <8
R 4 REQUEST_4_<8>
RE REQUEST & <8>
R 6 RYQUNST 6_<B)
R 7 REOIN ST 2 <8
REB FEQNST B <8
R 9 REQN ST 9 <8
R 10 REGUEST 19 <8>
R 113 RIUEST 11
R 1 RCOUEST 12 <8y
R 13 TREGUEST 13 <@>
R 1 RIGREST 14 <8>
R 16! REGAN ST 16 <8
asn BSNSFL B <8:3>

£S] 9 <&:24>

PROC
SHITCH
INYFACE

Pl

» » ®» B V¥ 3 opow
-
[

» » » 2
A W N =

9 & N > ¢

asn

£SO 9 <8:23>

REQ¥SY

-

59>

REQUEST

<9

REWE ST

<9

REQUEST

<92

REQUEST

<9

REQLESTY

192

REQUE ST

<9

RERE ST

9>

REQUEST

19

REQUE ST

8
b

<92

REUN¥ ST 1@

<9

BSOSt 9 <@:3>

REQUE ST 12 <9

REMESY 13 <92

REQUEST 14

<92

REQUEST 16 <9»

BSNSEL_6 <@:3»>

-

PROC
SHI TCH
INTFACE

Pl

PSO 10 <0:23>

RO RIEST & <18> fo
R 1 REQUEST 1_ <18

R 2 REUEST 2 <10

R 3 REQUCST 3 <103

R 4 " RCQUEST 4 <18

RE REQUEST 6 <10

R & REQGINST & 18>

R 7 RERNSY 7 <10>

PROC
5

R B REQINST B8 <10 R
R 9 T _RIGUEST 9 18> INTFRCE
R 12 REAX ST 106 <10>

R 11 REQNST 33 <10>

R 312 REQUEST 12 <108

R 13 REQUEST 13 <18 %
R 14 REOUCST 14 <18

R 16 REQUEST 15_<1@>

Bsn HSNSEL_10 <@:3>

(21

Processor Switch Interface 3/4 (Psm'rs)

e BN 6 M s W

®» ®» ®» » ¥ ® » » ¥ T ¥ X X D O X
o
&

asn

PSO 11 <0:23>

REQIFST @ <11
RTOLESY 1_<11>
REQUEST 2 <112
REQUEST 3 <112
REQUEST 4 <311>
RIQUCSYT 6 <131>
RIQUEST & <31
REQLEST 7 <11>
RIQUWST 8 <11>
WEQLEST 9 <11>
REQUEST 16 ¢311)>
. REQUIST 11 <31>
REQUEST 12 <11>

REQUIST 13 <113

REQUEST 14 <112

REGUFSY 156 <112

0snsa. 11 <o:3>

PSI 11 <0:24>

pAC2ER R 2L o5 L N——

50 12 <8:23> ’ PSO_13_<0:23» . PSO 14 <0:23> PSG 16 <0:273>

P e RrQIEST 8 <12» P e REQUEST 0 <0:13> ® e RCMUEST © «@:314> e REQIX ST & <8:16>
a3 REQUEST 1 <12y . REGUEST 1_<@:13> ’ ” 1 REQNEST 1 <0:14> . REQLE ST 1_<0:16>
@2 REQUEST 2 <123)2 REQUEST 2 <@:13> @z REMEST 2 <0:34> ®2 REQIEST 2 <@:16)
3 REQUCST 3 <12» ® 3 REQUEST 3_<0:13> ea RLOUCST 3 c@:14> a3 REQUEST 3 <0:162
” REQUEST 4 Q12> R e REQUEST 4 <@:13> Q4 REQUEST 4 <@:14> " REQUEST 4 <8:16>
R E REMEST & <12)> RS “f(lr’s' 6 <O:173> RE REMNEST & <D:14> RE REQUE ST 6 <B:15>
R 6 RIFQGIESY & <12 R & REQRIFST 6 <A:132> R 6 - REMAST & <O:14> R & RIQIN SY 6 (?:15)
R 7 REQREST 7 <12> "7 REQIN ST 2 <@:1 D> R RECAEST 7 <@:34> R 2| REQUEST 7 <9:156> ’
e &8 REGKST B 12> e R B REGUEST 8 <0:13 e ro REQUEST 8 <0:14> e ra REQUEST 8 <0:16)
INTFRCE ° REQUCST 9 <123 INYFACE R REQUEST 9 <8:13> INTRRCE REQUEST 9 <8:142 IR REQUEST 9 <0:15)>
- REGA ST 18 <123 ” 10 ROUEST 10 <@:13> ” 10 RLGUNST 10 _<B:14> " 10 REREST 18 <016
R 11 REANEST 13 <12> R 11 ROAUEST 11 <9:13 R 11 REQUEST 11 <D:14)> R 11 _R_E_g[s‘ 11 (B:‘ﬂ
R 12 REAN ST 12 <12> R 12 REQUEST 12 <@:13> R 12 REQAEST 12 <@:14)> R 12 REQUEST 312 <@:315>
X R 13 REOQUEFST 13 12> X R 13 HQAUXST 13 <8:13> X R ‘3- REQAUKEST 13 <@:14> X R 13 REREST ‘3 $8:16>
R 1 KEAEST 14 <12) R 14 HANSYT 14 ;0:‘3) - R 14 REGKST 14 <O:34 R 14 RFQA:[S' 14 <0:16>
” 16 REGNST 16 12> ® 16 ___FORST 15 <01 ° 16 FEGUEST 16 <8:14> ® 16 PEQEST 16 <0:16)
asn BSNSEL 12 <a:3> asn HSHSEL. 13 <@:3> asn BSIISEL 14 <9: 3> asn eSﬂSB_ 16 <9:3>
PI ’ eI PI X PY -
PSI 12 c@:2® PSI_13 <@:245 | PSI 14 <@;243 | PS1 15 <0:24>

ad

Processor Switch Interface 4/4 (PSINT4)

24 BIT
N 86R HORD<@: 23
CALL(B:23> oo & 00 —HORD<@: 2D
(= 4
L
$<1> POR
I ® 10160
T4t O
x
24 1T
<24:47%
oo 18186R oo HORD<¢24
3
s1L
=
§$<1> POR
1016648
: e L
- - X x
st b R o
[RPY) SR - .
R 1
R 3 |—R 1
” 2
L R 2
INTERFAGE R 2
R
CONTROL. 8 3 e B3
/4
YR S .4
RE
HORD< 1> ®E
vAL10 &6
HORDSP6> R &
uwokneeer . lurap R 7
HORD< 22 rRZ
S T4 S——— 3 T 1)
R
HORD< 28 i £
< >
e a0RD "’ 9
UORTC4D: 43> g
£ 40
HSHNO R 10
(IR Y} A————— 5 1 -
R 1
R 11 1
R 12
R 12
R 33
x IR | EG————_ R
: R 14
YL V) SU—— S
R 18
R 18— R 18
£5N<B: 3>
asn -

PROC Switch INTFACE ' (PSWINT)

ViatRa

L

BSM<O:

-
106 8
DECODER
10161
s ald S8z L
x
N0 ENY
: [
uLID °
READY .
VAL 10> 4HORD 2
vaLID 3 36 BIT
10164 | . COUNT
VALID, -
x
F4
z
& et 2 @3
z
7 o EM
: 6@ @1 ez a3
COUNT L Sl ax D
LedL N 10016
113 o *
z a » .
. g Do 01 bz D3
RCADY L AN 1
0L 101068
r— O—
X zZ_ 5 36 817 POR
" 10164 LOAD
£ -
X x
vALID 6 36 BIT
4 LATCH
6 asni<o: 10133
z ' ! *
| oK_OF
8.1 N)
o2 (1IN SEL<P: 3> . S<1> L N\
- — N resma
o3 { 3
O

Interface Control . (INTCTL)

1 OF 16
DECOOER

Dl

© © o © © 0 o 0 ©0 0 0 © © © © ©O

W oo

I

»

12

13

14

15!

Il

R
R

R3

RS’

R

RS

RS

3

L

R_3

|

R 12

R

H

R 14

R 15

7z

o™

-

e e s

Watlow

PSO 0_<9:23 PSO 1_<@:23> PSO 2_<@:23 PSO 3 (8:23> PSO 4_<:23> PSO 6_c8:23> PSO 6 _<0:2% PSO 7_<@:23)

DO 00 ’ : 00 06 Do 00 oo oo
BSI @ <P 5y o1 e o1 @ o1 e oI e o1 & o1 e D1 @
PS1) <@:2330 Iny g oI 1 . DIt (3 & T o1 1 o1 2 011 o1 1
ESL 2 <o20M 0y o1 2 b1 2 b1 2 oY 2 oI 2 o1 2 — or 2
ESL3 <&:2328 _Ipy3 o1 3 o1 3 DI 3 o1 3 o1 3 D13 o1 3
ESE 8 <2 Ipy 4] o1 @ o1 4 o1 4 o1 DI 4 D14 DI 4
ESI O <28 oy e oI 6 D16 016 D16 DI G D16 DI 6
sl e <o2h M5y ¢ PROC DI 6 PROC D1 & PROC DI & PROC : DI & PROC 01 6 PROC DI 6 PROC DI 6 PROC
ESIZ @23 iy Gven o1 > BTTEN o1 > o1 b1 7 ot T o1 7 SrTEn oI 7 mniCH 01 7 Syres o1 > marren
PS8 cozman |0 o o1 o1 8 o1 e ‘ o1 e oI s pie- oI 8
ES1 P <&2P 0 fpy e o1 @ o1 9 oI 9 - o1 @ o1 9 oie - o1 9
ESL 10 <@: 290 1y 50 118 1 18 I se 110 o1 10 I 1 10
FSI N _<@:2NN0 J5y 44 DY 11 1 11 I 13 - 113 ¥ 13 11 T 11
L2 @:20M o1 92 x 112 x 112 % 112 x 112 x 112 x 112 x 112 x
PSI 13 @:2maa) .o 113 - - . 113 113 113 —o1 13 b1 13
PSF 13 9:22M o1 14 114 Io1 14 1 3e b1 14 1 14 114 DI 14
ES1 16 <@:23\A [y o b1 16 - 116 16 DI 16 b1 16 116 D1 16

nl cn. . nI CcT ©onl (= (W nI cTL "l (o1 R nl cn nI cn (134 <
nen e InuE nER 1 JOLE . nEn 2 IE j nen 3 JOLE ‘ neEn 4 1 j nEn e I0E RS JOLE j nen? IE
““EST 8 _<8:16> E_“ST 1 . <8:156> REQLEST 2 <®:18) REGUEST 3 <8:16) ws]’ & M REQUEST 6 <®:16> REQUEST 6 <@: Ig’ REQ <216

Processor Memory Switch 1/2 (PMSW1) -

PSO 8_c0:23 P50 9 <0:23> PS5O 10_c0:23 PO 12 <0:23> P60 14_c0:23> PSO 16_<0:23>
56 6 56)) () (3)
£l 8 <&2P _ipr e o1 e o1 e oie oI e o1 e o1 e o1 &
£l 1 022\ _ipy g o1 1 o1 1 o1 o1 3 o1 1 o113 o1 1
ESl2 <82 ig; 2 o1 2 o1 2 D1 2 o1 2 oI 2 orz o1 2
ES1 32820 gy 3 o1 3 o1 3 013 or 3 o1 3 013 o1 3
Lo S oI 4 oF 4 oI 4 - oI 4 o1 4 DI 4 oI 4
ESl B <22 Iy o1 6 o186 D186 o1 6 o1 6 oI E ole
P2l e <@2N\B_ipny ¢ ProC 01 & PROC DI 6 PROC DX 6 PROC DI & PROC D1 & PROC D1 & PROC DI & PROC
PSI 7 <9:233\B MEn ren en nrn nen nen nen nen
DI 7 SHITCH DI 7 SHITCH DI 7 SHITCH DI 7 SMITCH DI 7 SHITCH DI 7 SHITCH DI 7 SHITCH DI 7 SHITCH
ES1 B <222 o1 e bl e o1 @ ore - o1 @ o1 8 p1e b1 @
ESLD «@2PNB _jpy 9 o1 9 o1 9 o1 e o1 9 b1 9 o019 o1 9
Esi 10 @:20\0 i 49 118 - 1 18 : 3 10 11e 1 10 o1 10 X 18
MD] 13 111 1 11 I 13 It I 13 11 I 31
F2l12 @:29\8 iy 42 i 112 x 112 x 112 x 112 x 112 x 112 x 12 x
€81 12 0:208 lo; 43 113 113 313 : 113 br 13 113 T 13
3L 108 @:2938 i) 34 114 1 34 1 14 114 114 . DI 14 I 14
£S1 16 10:29)B 4y 46 b1 18 316 D1 16 b1 16 b1 16 oy 16 - DI 16
nl cn nl cTL ni cT nI L .nx CcTL () cTL n1 CcTu n CcvL
nen e Joug | n 91 non 10 JOLE nen 11 e non 12 e | nEn 13 muE | PEN_ 14 SOUE | rEn 16 SoLE |
REQUEST B <@:16> | REQUEST 9 <@:36>] REQUEST 10 <0:15» REGUEST 11 _<9:16) | - reouesT 12 co:16) SEGUEST 13 <8:16> REQUEST 14 <@:16> BEQUEST 16 @By |

‘ Processor Memory Switch 2/2 (PMSW2)

L'E

CYL<B: 16

DO _<@: 23>

Dl @ <@:23> PY
DI 1 <@:23> 1
Dl 2 <0:23> 2
01 3 <0:23> 3
Dl 4 <B:23> -
Dl 6 <&:273> 6
Dl & <@:23» o
D1 7 _<8:23 >
24 81T
prece2y . |g t6emx
DI 9 <@:23> 9
DI 10 <@:23> 10
DI _13_<8:23> 1
D1 312 <©:23> 12
DI 13 <0:23> 13
DI 14 <8:23> 14 2]
D1 15 <@:23> Lw/T/&

ni

PIN

FPROCSEL <®;: 3>

PROC MEM Switch (PMSMUX)

¥ 9

76 B11 s
. PRIO ENCODER To133
€ 18166 PROCUAIT<O: 3> OUT<B:3>
ANY 1 ¥
CTL¢@: 15> ° o x
Y 16 BIT x e Q ENPTY L
10131
e o
Y16 L —_— e NeC %
N re1e8a a> <@
___O - 1 g
x
nIN L o
¥21 4 O

1 OF 16

DECODER

s ob—-REROY<o1Ey] .
x

ENG ENY -
[eres

' Protocol Network (PROCOL)

59

181B6R
nice:2% oo X oo l—SCND0:23
X w
10186R
e x oo SEND24: 423
X

Switch MEM INTFACE (SWMINT)

aé?

NSl & <&:22>\R
nSE 1 <220 \R
nsy 2 <e:22r\h

le JOcc A
NSl 3 <e:223\R
NSl 4 <H: 223\
HSI 6 <B:223\N
DBSI 6 <e:22)\R
nS] 7 _<8:22>\f
nsl 8 <6:23>\f
nSI 9 <&:222\A
NSl 18 w@:22>\f
ns1 1’! 8:22)\A
nsl_j2 <@:22>\A
nST 13 _«@:222\0
NS} 14 _<0:22>\0
RSl 16 «B: 2273\

D3
oI
[+24
ox
[+2 4
'3
21
ox
BI
(-2
1}
D1
DY
0¥

DI

°
1
2
3
4
[
6'mEn
PROC
7 SMITCH
[
9
10
11
12 x
13
14
5
21

BSIOLL 8 <@: 3> |

BSNEEL 2 <@:3 |

neo t_<@:22> RSO 2 <@:p2> NS0 3 _<9:22>
. 0o [
DI ® DI ® Dl e
o1 1 DI 3 oI
D1 2 bx 2 Dl 2
o1 3 01 3 DI
oI 4 DI 4 01 4
DI & DI & DI B
OI 6 rER DY 6 rmER D1 & rEM
PROC PROC PROC 3
DI 7 SUITCH 01 7 SHlTCH DX 7 SHITCH
DI B DI 8 oI 8
o1 9 or % D19
110 T 18 I 10
I 1 31 X 11
112 X I 12 X I 12 X
113 1 13 3 13
134 1 14 DI 14
E 1 PI o1 18 PI o1 e (24

NSO B_<8:22>

M50 4 <«@:22)>
)
o1 @ o1
o1 1 b1
o1 2 < b1
o1 3 [}
o1 4 o1
018 o1
D1 & rEN o1
PROC
OI 7 SHITCH o1
o1 8 o1
o1 9 - o1
1 18
111 X
712 % 3 ¢
X 13 1
b1 14 3
o1 185 b
PI

BsnsCL 4 <@: 3>]

4 ® N o0 o A WN o=

-
°

12
13

14

MnSO 6 _<9:22>

nso 7 _<o:

[: 24
DI
oI
ox
ol
oI
[:29
[+24
DI

DI

DI

agnsEL 6 L1 $9¢ ;]

Memory Processor Switch 1/2 (MPSW1)

BSMSEL & _<0:3)

¢ 0 N O B s ww

-
.

12
13
14

16

¢4

[

01

[4

1224

[24

DI

[24

6 rEn

7 SHITCH

14

36

PX

ssnsfL 7 <@

otia B AR 1T SR

1L

nso 9_<&:22>

nSO 8_<@:22)

DO
nSl @ _<&:22>\B o1 e o1
‘mSI 1 <@:22N8 Iy o1
NSy 2 <@:223\8 D1 2 o1
nSI 3 <&:22>\B DI o1
NSl 4 <@:22> B DI 4 o1
nsl & <@:22>\8 D1 S o1
BSI 6 <@:22>\8 01 6 rEN o1
nsi 2 o2z | o TR0C o1
NSl 8 <8:22>\8 D1 @ o1
HSI 9 <@:227\B 019 b3
HSI 10 <@:22>\B o1 1@ i
MSI 1) _<@:22)\B b1 11 1
BSI 12 <@:222\B iy g0 . 5
#HSE 13 <@:227\B o1 13 o1
HS1 3A <B:220\B iy 4 1
nsi 36 _<@:223\8 DY 16 DI

PI

BSNOEL B <833

11

12

13

14

16

P

nso 10_<H:22>

o1
o1
b1
)4

[+

23

[
oy

oI

o1

BSNSEL_9 <9: 3 |

00
[]
1
2
R .
4
3
& MEn
PROC
7 SHITCH
a
®
19
9
12 X
13
14
16
PI

S0 11_(9:22>

NSO 12 <@:22)>

00 [+4]
ore o1 @ ox
o113 o1 1 o1
b1 2 o1 2 o1
or 3 oI 3 [
oI« DI 4 o1
o016 oI & o1
o1 6 rEN o1 6 rEn ox
PROC PROC
DI 7 SHITCH DI 7 SMITCH o1
o1 s p1e ° [}
[$ 23 o1 9 o1
1 10 b1 10 H
b1 11 3% b
112 X 12 x
X 13 113 X
—ib1 14 DT 14 |
p1 16 116 DX
. - P (31
iy o3 @smMscL_12 «9: 3> BoMSCL 13 <@: 3 |

HMSO 13 <9:22>

11
12
13
14

16

x

Pl

150 14_<0:22)

D1

DX

(224

o1

oI

[+21

o1

D3

(224

o1

Memory Processor Switch 2/2 (MPSW2)

BsnseL

oo

11

12
13
14

16

PI

el

HSO 16 _<@:22)

-,

[») 8

D1

-

[

23

o1

Dl

2

234

[4

¢ O N 6 0 o W N
3

{28

DX

-
.

1 12 X

DY 13

DI 14

A _<O:3>

BSNSEL 16 <O:D |

DI 16
PI

273

5. Summary

The LLL Programmable Digital Filter is a high-performance multiprocessor having general
purpose applicability and high programmability; it is extremely cost effective either in a
uniprocessor or a multiprocessor configuration.

The important system characteristics of the LLL Filter are as follows:
- Mutltiple (16) identical processors execute independent instruction streams.

- Every processing element can uniformly address all system memory through a (25—
bit serial) crossbar switch.

- Each processing element has dual private caches to reduce contention for main
memory, to reduce average memory access time, and to insure that system
performance does not seriously degrade as more processing elements (and
therefore a bigger and slower interconnection network) are added.

- Each processing element can direct an interrupt to any other processing element.

- Munch registers, hardware queues, and read-modify-write memory capability are
available for synchronization. :

- The virtual-to-real memory maps include access mode bits which allow efficient
sharing of data and instructions.

The architecture and instruction set of the individual processor has been optimized with regard to
the multiple processor configuration. The important processor architecture features are as follows:

- A very large (228 word) virtual address space to allow each processor to uniformly
address any system memory of feasible size in the forseeable future.

- Efficient mechanisms for allowing the executive to communicate with user
processes.

-* A high-level instruction set ideally suited for compilers.

- An instruction set specifically tallored to reduce the frequency of pipeline
interlocks in a high- performance implementation.

- The capablhty to perform three—operand instructions through the use of a unique
"T-field" descriptor.

- Comprehensive floating-point capability, including three rounding modes and the
option to trap on excess pre- or post-normalization.

- The capability to directly perform operations on operands of ¢ prec:snons
quarter- -word, half-word, single-word, and double-word.

- Special instructions for dealing with the multiprocessor environment.

274

6. References

Amdahl, G. M. 1967 "Validity of the single processor approach to achieving large scale
computing capabilities,” Proc. AFIPS 1967 § JCC, 30:483-85. _

Ball, J- R. et al. 1962. "On the use of the SOLOMON parallel-processing computer,” Proc. AFIPS
1962 F JCC, 22:137-46.

Barker, W. B. 1975. "A Multiprocessor Design,” Bolt Beranek and Newman, Inc,, Report BBN-
3126, October 1975, 284 pp.

. Carroll, A. B, and Wettierald, R. T. 1967. Apphcatlons of parallel processing to numencal
weather predncuon, J-of the ACM, 14:591-614. '

Flynn, M. J*1966. "Very hlgh-speed computing systems,” Proc. of the IEEE 54:1901-9.

Hamer-Hodges, K. J. 1973. "A Fault—Tolerant Multiprocessor Des:gn for Real-Time Control
. Computer Design, July 1973, 75-81.

Kahan, W. 1973, “"Implementation of Algorithms. Part 1.", Technical Report 20, Departmént of
Computer Science, University of California, Berkeley, California, 1973, 339 pp. ,

Kaplan and Winder, 1973, "Cache-based Computer Systems,” Computer, March, 1975, 30-36

Katz, J. H. 1970. "Matrix computations on an associative processor,” Parallel Processor Systems,
Technologies, and Applications, L. C. Hobbs ed., Spartan Books, Washington, D.C., 131-49.

Minsky, M., and Papert, S. 1971. "On some associative, parallel, and analogue computations,”
Associative Information Techniques, Elsevier, New York, New York, 1971.

Sedgewick, R. 1975, "Quicksort,” Report No. STAN-CS 75-492, Stanford University Computer -
Science Department, May 1975, 352 pp. ,

Steele, G. L. 1975. "Multiprocessing compactifying garbage collection,” Communications of the
ACM, September 1975, Vol. 18, No. 9, 495-508.

275

Al. Abbreviations

This is @ list of the abbreviations used throughout the design.

ABS ABSOLUTE VALUE

ADD . ADDER

ADR ADDRESS

BC BRANCH CONDITION
BOC BAD ONES COUNT (FLDATING POINT)
BR BRANCH

BZ BOTTOM ZEROES

BZC BOTTOM ZEROES COUNT
C CACHE

cr - CARRY IN

cK _ CLOCK

CLR CLEAR

CHP COMPARE

co CARRY OUT

- COMPL COMPLEMENT
COND CONDITION
cs CHIP SELECT
CSA CARRY-SAVE ADDER
CiL - CONTROL
CTR COUNTER -

DEC DECREMENT

DEST DESTINATION

DI DATA IN

DIS DISABLE

D0 . DATA OUT

DP DATA PARALLEL

D DOUBLE-WORD

E E SEQUENCER MICRO INSTRUCTION FIELD
EBOX EXECUTION BOX

EN ENABLE

ERR ERROR

EWAR EBOX WRITE ADDRESS REGISTERS
EX EXECUTION

- EXP EXPONENT
F FUNCTION
FA FULL ADDER
FS FROM SWITCH

*
G GREATER THAN (ZERO), CARRY GENERATE, GUARD

GE GREATER THAN OR EQUAL TO (ZERO)

H HIGH (ONE), HIGH (SIGNIFICANCE) BITS
HW HALF-WORD
I T INPUT .

1 I SEQUENCER MICRO INSTRUCTION FIELD
1BOX INSTRUCTION BOX -
IMMED IMMEDIATE ‘ |
INC INCREMENT

IND, - INDIRECT

276

INSTR
INT

IRS

PROC
PRIO

REG
REL
REM
REPT
RND
"RNM

S
SCNT
SEL
SIN
SKP

SRC
SW

TZC

TRANS

Abbreviations : Al

INSTRUCTION

INTERRUPT

INSTRUCTION REGISTER

SECOND OR THIRD WORD OF INSTRUCTION REGISTER

LESS THAN (ZERO), LOW (SIGNIFICANCE) BITS
LESS THAN OR EQUAL TO (ZERO)

LENGTH

LEAST RECENTLY USED

LEAST-SIGNIFICANT BIT

MODE, MIDDLE (SIGNIFICANCE) BITS
MANTISSA

M1CRO-CONSTANT

MEMORY

MULTIPLEXER MERGER

MICRO PROGRAM COUNTER
MULTIPLEXER

NEGATIVE 5
NOT EQUAL TO (ZERO)
NUMBER ‘

NEXT WORD .
NON-ZERO

OUTPUT ENABLE
OPERAND
OVERFLOW

CARRY PROPAGATE :

P SEQUENCER MICRO INSTRUCTION FIELD
PHYSICAL ADDRESS

PROGRAM COUNTER

PARALLEL ENABLE

POSITION -

PROCESSOR

PRIORITY

READ

REGISTER
RELEASE
REMAINDER
REPITION
ROUND
RENAMED

SELECT, SuM
SHIFT COUNT
SELECT
SHIFTER INPUT
SK1P

SHORT OPERAND
SOURCE
SINGLE-WORD

ADDRESS TRANSLATION
QUTPUT
TOP ZEROES COUNT

OUTPUT ‘

i

Al

au
UNDOFL

VA
WE

XBOX

Abbteviations

QUARTER-WORD
UNDERFLOM

OVERFLOW
VIRTUAL ADDRESS

WRITE.
WRITE ENABLE-

TRANSMITTED
EXPONENT BOX

ZEROD

277

278

A2. Micro-Code Conventions

: INDICATES THE BEGINNING OF A FIELD DEFINITION'
% INDICATES THE BEGINNING OF A MACRO DEFINITION
0 DELIMIT THE BODY OF A MACRO DEFINITION
SEPARATES TERMS IN A MICRO-INSTRUCTION
ENDS A NICRD—INSTRUCTIUN OR COMMENT

-e

= SEPARATES A FIELD NAME FROM ITS VALUE

! INDICATES THE BEGINNING OF A COMMENT WHICH CONTINUES TO THE
LINE FEED :

ADD(X,Y) :ALEG ("X") ,BLEG("Y")

INDICATES THAT PARAMETER X AND Y OF ADD MACRO ARE TO BE SUBSTITUTED AS
PARAMETERS OF THE ALEG AND BLEG MACRO RESPECTIVELY. '

ALEG (X) sAIN"X"

INDICATES THAT PARAMETER X OF THE ALEG MACRO IS TO BE DIRECTLY
SUBSTITUTED AS TEXT AFTER THE STRING "AIN"

x INDICATES DEFAULT VALUE OF FIELD SPECIFICATION.
"COHNENT INDICATES THAT ALL TEXT UNTIL A SEMI COLON IS COMMENTS

A3. P-Sequencer Micro-Code Fields

S$DEST REG CTL<B:1>

* REG ADR el
oDl =2
ADD =3

$1BOX START ADR<@:11>
* , =B
$LAST START ADR

x _ =0
. =1

$0PS READY WHEN 1BOX DONE

x =0
=1

80UT SEL A
* REG =0
CONST =1

$0UT SEL B
x REG -0
CONST -1

'$REG R ADR<@: 4>

% _ =0
$REG W ADR<@:4>

x =0
$SRC REG CTL A<B:1>

x : =0

REG ADR =]
oD =2

ADD =3’

279

'DEST REG ADR<@:4> = "REG ADR<8:4>"
= "]R<14:18>"
! " = "SUM OF ABOYE TWO FIELDS"

ISELECTS THE SOURCE FOR THE READ-ONLY DATA
ITHE "OUT A" LINES.

ISOURCE A REGISTER
:}gﬁgglATE CONSTANT OR CACHE ADR IF C ADR SEL
T

ISELECTS THE SOURCE FOR THE READ-ONLY DATA
ITHE "OUT B" LINES. -

ISOURCE A REGISTER

;}QNEE%ATE CONSTANT OR CACHE ADR IF C ADR SEL

IDON’T SET OPERAND

»'SRC (A OR B) REG ADR="REG R ADR<@:4>"

="0D0 REG ADR<@:4>"

,j " =SUM OF ABOVE TWO FIELDS

280 P-Sequencer Micro-Code Fields | : - AS

$SRC REG CTL B<®@:1>

=0
REG ADR =1
00 =2
ADD | =3
$SRC REG OUT SEL
001 =0
%* 0D2 =]
$SET EUWAR
x =8
=]

=1

$0PS READY WHEN 1BOX DONE

x =0
: =]

80UT SEL A
* REG =0
CONST =1

$0UT SEL B
x REG -0
CONST -1

'$REG R ADR<@: 4>

% _ =0
$REG W ADR<@:4>

x =0
$SRC REG CTL A<B:1>

x : =0

REG ADR =]
oD =2

ADD =3’

1DON’
'SRC

=LET

ISET

T SET OPERAND
(A DR B) REG ADR="REG R' ADR<@:4>"
="0D REG ADR<B:4>"
" ‘ =SUM OF ABOVE TWO FIELDS

THE I SEQ CﬁLCULATE THE 88% ADDﬁESS

THE EBOX WRITE ADDRESS REGISTER TO THE

ISELECTS THE SOURCE FOR THE READ-ONLY DATA
ITHE "OUT A" LINES.

'SOURCE A REGISTER
:}QHEEIATE CONSTANT OR CACHE ADR IF C ADR SEL
T

ISELECTS THE SOURCE FOR THE READ-ONLY DATA
ITHE "OUT B" LINES. -

ISOURCE A REGISTER

;}QNEE%ATE CONSTANT OR CACHE ADR IF C ADR SEL

IDON’T SET OPERAND

»'SRC (A OR B) REG ADR="REG R ADR<@:4>"

="0D0 REG ADR<@:4>"

y " =SUM OF ABOVE TWO FIELDS

281

A4. P-Sequencer Micro-Code Macros

%
%A+1

%A+2
%A+3

. %B

%B+1

'%B+2

%B+3 *

%0

%D .RT (AB)
%0+N (N)
%0H

%DH RT (AB)
%DH#N (N)
%DONE

%E (ADR)
%H

%N (ODN)
%R D(ADR)
%R (ADR)
%S1

%51 RT(AB)
%S1+N (N}
%52

%S2 RT(AB)
%S2+N (N)

(61
(73
(8]

13

(8]
(9]

(101

[11)

[SET EWAR=1,DEST REG CTL=0D1]

[SET EWAR=1,REG W ADR=ABI

[SET EWAR=1,DEST REG CTL=ADD,REG W ADR="N"]
(D, DISABLE EWAR CHP=1]

(D RT(AB),DISABLE EWAR CiP=1]
(D+N(N) , DISABLE EWAR CMP=1]

(LAST START ADR=1]

[1BOX START ADR=ADR]

[DISABLE EWAR CMP=1]

[SRC REG OUT SEL=0ON)

{R(ADR) , DONE)

[OPS READY WHEN IBOX DONE=1,IBOX START ADR=ADR]

[SRC REG CTL A=0D]

[SRC REG CTL A=REG ADR,REG R ADR=AB]

[SRC REG CTL A=ADD,REG R ADR=N)

{SRC REG CTL B=0D,SRC REG OUT SEL=001}

[SRC REG CTL B=REG ADR,REG R ADR=AB,SRC REG OUT SEL=0D11
[SRC REG CTL B=ADD,REG R ADR=N,SRC REG OUT SEL=-0D1]

282

' AS5. P-Sequencer Micro-Code

1001 =REG, 0D2=REG
. |DEST=CH " SRC 1=QHS SRC 2=QHS

' ' s1 ' LR (SW SRC);

D Sl 'R D(NOP) ;
S1 RT(A) R (SW SRC)

D ,S1 'R DINOP) ;
_ 51 R (SW SRC);

D RT(A) ,51 RT(A) - 'R D(NOP);
' s1 R (SW SRC);

D RT(B) ,51 RT(B) 'R D(NOP);

1T=8
1T=l

1T=2

173

Ab

1001 =REG, 0D2=REG

IDEST=S
. ‘ D
D

D RT(A)

D RT(B)

IDEST=S

D

D RT(A)

D RT(B)

IDEST=S

D
D RT(A)
D RT(B)

1DEST=S

0
D RT(A}

D RT(B)

P-Sequencer Micro-Code

R D(SW SRC);

R D(SW SRC);
»R D(SW SRC);
+R D(SW SRC);

,R (SW SRC);
R D{(NOP);

SRC 1=0HS SRC 2=0HS
,S1
,S1 RT(A)
.51
,S1
SRC 1=D SRC 2=5
g
,S14N(1)
S1 RT(A)

~,S1 RT(A+1)

-S1

-~ S14N(1)

SRC 1=S

SRC 1=D

S1
,S1+N (1)

SRC 2=D
S1

S1 RT(A)
s1

S1

SRC 2=D

St .
,S14N (1)

S1 RT(A)
»S1 RT(A+1)

S1
»S1+N(1)

S1
»S14N(1)

+R (SW SRC}
»R D(NOP) 3

+R (SW SRC);
+R DINOP);

,R (SW SRC);
+R D(NOP) s

+R (SW SRC);
,R D(W2 REG);

+R (SW SRC);
»R D{W2 REG);

,R (SW SRC);
»R D(W2 REG);

+R (SW SRC);
»R D(W2 REG);

,R (SW SRC);
»R D(W2 REG);

R (SW SRC);
»R D(W2 REG);

,R (SW SRC);
,R D(U2 REG)s

wR (SW SRC);
+R D(H2 REG);

1T=8
1T=l
1T=2
IT=3

1T=0
IT=l
T2

1T=3

1T=8
1T=1
1T=2

1T=3

1T=8
1T=l
1Te2

1T«3

283

DH RT(A+1) ,S1

D RT(A) ,S1+N(1)

P-Sequencer Micro-Code

284
. 10D1=REG, 0D2=REG ,
IDEST=D - ' SRC 1=5 "SRG 2=§
D+N(1) ,S1 LR (S SRC);
0 'R D(NOP);
D+N (1) ,S1 RT(A) R (SW SRC);
. D "R DINOP);
D RT(A+1) ,S1 JR (SW SRC);
~ DRTA . .R DINOP);
/ D RT(B+1) ,51 LR (SW SRC);
D RT{(B) 'R D(NOP);
IDEST=D SRC 1<=D SRC 2=S _
DH+N (1) ,S1 JR (SW SRC);
D "S14N(1) 'R DINOP);
DH4+N (1) ,S1 RT(A) LR (SW SRC);
D 'S1 RT(A+1) 'R D(NOP)
DH RT (A+1) ,S1 R (SW SRC);
D RT(A) TS14N(1) 'R DINOP) ;
DH RT(B+1) ,S1 JR (SW SRC);
D RT(B) "514N (1) 'R DINOP) s
IDEST=D SRC 1=5 SRC 2=D
DH+N (1) .51 LR (SW SRC);
D 'R D(K2 REG);
DH+N (1) ,51 RT(A) JR (SW SRC);
. D o 'R D2 REG);
DH RT (A+1) ,S1 JR (SW SRC);
D RT(A) 'R D(L2 REG);
DH RT(B+1) ,S1 JR (SW SRC);
D RT(B) 'R D(K2 REG);
IDEST=D SRC 1=D SRC 2D
DH4N(1) ,S1 , JR (SW SRC);
D TS14N(1) 'R D(W2 REG);
DH4N (1) ,S1 RT(A) LR (SW SRC);
D "S1 RT(A+1) 'R D2 REG);

+R (SW SRC);
+R D{W2 REG);

1T=0

1Tel

1T=2

1T=3

17-8
1Tu1
1T=2

1T=3

1728

1T=1
17=2

1T=3

1T=8
IT=1

1T=2

Ab

Ab

\DEST=D

OH RT(B+1)
D RT(B)

SRC 1=4U

DH+N (1)
D

OH+N (1)
0

DH RT(A+1)
D RT(A)

DH RT(B+1)
D RT(B)

P-Sequencer Micro-Code -

51
+S14N(1)

SRC 2=D

S1 .
S1+N{1)
+S14N(2)
,S1+N(3)

S1 RT(A)

S1 RT(A+1)
,S1 RT(A+2)
»S1 RT(A+3)

S1

S14N(1)
, S14N(2)
»S14N(3)

S1

S1+N(1)
»S14N(2)
»S14N(3)

+R (SW SRC);
,R D(U2 REG);

R (SW SRC);

,R (W2 REG); -

+R (NOP);
»R D(NOP);

R (SW SRC);
R (W2 REG);
R (NOP);
R D(NOP)

+R (SW SRC);
yR (W2 REG);
,R (NOP);
+R D(NOP);

,R (SW SRC);

L]
1 4
*
’

- ,R (W2 REG);

,R (NOP);
+R D(NOP) ;-

T3

1T=8

1Ta1

1T=2

1T=3

¢

286

10D1=REG, 0D2=REG

. 1DEST=4U

 IDEST=4W

'!DEST-4H

SRC 1=D

DH

D+N (1)
D+N(2)
D+N(3)

OH

D+N (1)
D+N(2)
D+N(3)

OH RT(A)
D RT(A+l)
D RT(A+2)
D RT(A+3)

DH RT(B)

D RT(B+1)
D RT(B+2)
D RT(B+3)

. DH

D+N (1)
D+N(2)
D+N(3)

DH

D+N (1)
D+N(2)
D+N (3)

DH RT(A)

D RT(A+1)
D RT(A+2)
D RT(A+3)

BH RT(B)

D RT(B+1)
D RT(B+2)
D RT(B+3)

SRC 1=D

SRC 1=4U

P-Sequencer Micro-Code

SRC 2<D

,S1
»S1+N(1)

,S1 RT(A)
»S1 RT(A+1)

,S1
,S14N(1)

'Sl :
,S14N(1

SRC 2=D

51

S14N(1)
+S14N(2)
+S14N(3)

S1 RT(A)
S1 RT(A+1)
»S1 RT(A+2)

- ,51 RT(A+3)

S1

S1+N(1)
,S14N(2)
»S14N(3)

S1

S1+N(1)
yS14N(2)
»S14N(3)

SRC 2=4U

S1
S1+N(1)

,R (SW SRC);

+R (W2 REG);
,R (NOP);
,R D(NOP);

yR (SW SRC);
yR (W2 REG);
yR (NOP);
+R D(NOP);

+R (SW SRC);
+R (U2 REG);
,R (NOP);
+R D(NOP);

,R (SW SRC);
,R (W2 REG);
+R (NOP);
»R D(NOP);

(SW SRC) 3
(W2 REG);
(NOP) ;
(NOP) ;
(NOP) ;
(NOP)

R

R

R

R

R

R

R (SW SRC);
R (W2 REG);
R (NOP);

R (NOP);
R

R

R

R

R

R

R

R

.- v @ e

(NOP} ;
D(NOP) ;

(SW SRC);
(W2 REG);
(NOP) ;
(NOP)
(NOP) 3

D (NOP) ;

- * w w e -

,R " (SW SRC);
yR (W2 REG);
,R (NOP);
+R (NOP);
,R (NOP);
,R D(NOP);

(SW SRC) 3

R
yR (U2 REG);

1T=0

1T=1

IT=2

1T=3

1T=0

IT=1

1T=2

1T=3

1T=0

Ab

Ab

DH

D+N (1)
D+N(2)
D+N (3)

DH

D+N (1)
D+N (2)
D+N (3)

DH RT (A)
D RT(A+1)

D RT(A+2) -

D RT(A+3)

BH RT (B)
D RT(B+1)

D RT(B+2) -

D RT(B+3)

P-Sequencer Micro-Code

yS24N(2)
»S24N(3)

S1 RT(A)
S1 RT(A+1)
+S2+N (2}
,S524N(3)

S1

S14N(1)
»S24N(2)
+S24N(3)

s1 ,
S1+N(1)
,52+N(2)
.S24N(3)

(NOP) ;
(NOP) 5
(NOP}
(NOP) ;

R

R

R

R

R (SW SRC);
R (W2 REG);
R (NOP);

R (NOP};

R (NOP)

R D(NOP);

R (SW SRC);
R (W2 REG);
yR (NOP);
R (NOP);
R (NOP);
,R D(NOP);

+R (SW SRC);
+R (U2 REG);
,R (NOP);
+R(NOP);
,R (NOP) s
»R D(NOP);

287

1T=1

1T=2

1T=3

288
1001 =REG, DD2=GENERAL
IDEST<=QH SRC 1=QHS SRC 2=QHS
51
D .51
S1 RT(A)
D ,51
D RT(A) ,51 RT(A)
s1
,51 RT(B)

D RT(B)

P-Sequencer Micro-Code

,R (SW SRC);

'R DINOP);
,R (SW SRC);

" ,R D(NOP);

R (SW SRC);
.R D(NOP);

WR (SW SRC)3

»R D(NOP) 3

IT=0

1T=1

IT=2

1T=3

Ab

ASb

P-Sequencer Micro-Code

R D(SH SRC);
R DISW SRC);
,R D(SH SRC);
R D(SH SRC);

,R (SW SRC);
,R D(NOP);

,R (SW SRC);

+R D(NOP);

+R (SW SRC};

+R D(NOP);

+R (SW SRC);
»R D(NOP);

JR (SW SRC) s

,R D{K2 SRC);

,R (SW SRC);
»R D(U2 SRC};

,R (SW SRC);

.- »R D{K2 SRC);

+R (SW SRC);

,R D(W2 SRC);

,R (SW SRC);

+R D(W2 SRC); -

+R (SW SRC);
,R D(L2 SRC);

+R (SW SRC);
»R D(W2 SRC);

,R (SW SRC);
+R D(W2 SRC);

1001 =REG, 0D2-GENERAL
IDEST=S SRC 1=QHS SRC 2=QHS
D .81
D .S1 RT(A)
D RT(A) .51
DRT®) .51
IDEST=S SRC 1=D SRC 2=5
s1
D (SL4N(1),
S1 RT(A)
D ,S1 RT(A+1)
's1
D RT(A) JSLaN(1)
51
D RT(B) ,SL4N(1)
\DEST=S SRC 1-5 SRC 2D
' s1
D
S1 RT(A)
D
51
D RT(A)
s1
D RT®) .
IDEST=S SRC 1-D SRC 2D
| 51
D ,SL4N(1)
'S1 RT(A).
D .51 RT(A+1).
51
D RT(A) ,SL4N(1)
| 51
D RT(B) JSL4N(1)

1T=0
17=1
1T=2

173

178
1Tl
T2

1T=3

1T=0
1T=1
1T=2

1T=3

1T=8
1Tel
IT=2

1T=3

289

1 : P-Sequencer Micro—dee

290
1001 =REG, 0D2=GENERAL
IDEST=D SRC 1=5 ~ SRC 25
D+N (1) ,51
D(1)
. D+N (1) ,51 RT(A)
D(1)
D RT(A+1) .81
‘D RT(A)
D RT(B+1) ,51
D RT(B)
IDEST=D SRC 1=D - SRC 2=5
DH4N (1) ,51
D "S14N(1)
DH+N (1) 'S1 RT(A)
i) 'S1 RT(A+1)
OH RT (A+1) ,51
D RT(A) JS14N(1)
OH RT(B+1) 51
D RT(B) "S14N (D)
|DEST=D SRC 15 SRC 2<D
DH+N (1) ,S1
D .
DH4N (1) ,51 RT(A)
D
OH RT (A+1) ,51
‘D RT(A)
DH RT(B+1) ,S1
D RT(B)
|DEST=D SRC 1sD . SRC 2=D
DH+N (1) ,51
D "S14N(1)
DH4+N (1) ,S1 RT(A)
D 'S1 RT(A+1)
OH RT (A+1) ,S1
0 RT(A) "S14N(1)

DH RT(B+1) ,S1

- -

(NOP) ;

(SW SRC) 3
(NOP) ;

(SH SRC);
(NOP) ;

(SW SRC) ;
(NOP) ¢

- -

O O o o

R (SW SRC);
R D(NOP) ;

R (SW SRC);
R D(NOP);
R

, (SW SRC);
+R D(NOP);

,R (SW SRC);
+R D(NOP);

,R (SW SRC);
,R D(W2 SRC);

+R (SW SRC);
,R D{W2 SRC);

,R (SW SRC);
+R D(W2 SRC);

,R (SW SRC);
,R D(U2 SRC);

LR (SW SRC);
R D(K2 SRC);

,R (SW SRC);
+R D(W2 SRC);

,R (SW SRC);

. »R D2 SRC);

,R (SW SRC);

(SW SRC) ;

1T=0
1T=1
1T=2

1T=3

1T=0
I1T=1

IT=2

1T=3

IT=0
1T=1

1T=2

173

1T=0

1T=1

IT=2

1T=3

Ab

Ab

1DEST=D

‘D RT(B)
DH+N (1)
D

DH+N (1)
D

SRC 1=4UW-'

’
’

P-Sequencer Micro-Code

S14N(1)

SRC 2=D

S1

S1+N(1)
S14N(2)
S1+N(3)

S1 RT(A)

" S1 RT(A+1)

’
’

DH RT(A+1) ,

D RT(A)

D RT(B)

’

S1 RT(A+2)
S1 RT(A+3)

Si

S1+N(1)
514N (2)
S1+N(3)

- 81
DH RT (B+1) ’

S1+N(1)
S1+N(2)
S14N(3)

R D(M2 SRC);

+R (SW SRC);
+R (U2 SRC);
,R (NOP);
+R D(NOP);

,R (SW SRC);
yR (K2 SRC);
+R (NOP);
+R D(NOP);

,R (SW SRC);
»R (W2 SRC);
,R (NOP);
»R D(NOP) ;

R (S SRC);

+R (W2 SRC);
+R (NOP);
»R D(NOP);

170

1T=1

1T=2

1T=3

291

202

1001 =REG, 0D2=GENERAL
SRC 1=D

IDEST=4U

!DEST=4H

DH

D+N (1)
D+N(2)
B+N(3)

OH

D+N (1)
D+N (2)
D+N(3)

DH RT(A)
D RT(A+1)
D RT(A+2)
D RT(A+3)

DH RT(B)
D RT(B+1)
D RT(B+2)
D RT(B+3)

SRC 1=4W

*

DH
D+N (1)

- D4N(2)

IDEST=4W

D+N(3) -

DH

D+N (1)
D+N (2)
D+N (3)

DH RT(A)
D RT{A+1)

D RT(A+2)

D RT(A+3)

DH RT(B)
D RT(B+l)
D RT(B+2)
D RT(B+3)

SRC 1=D

P-Sequencer Micro-Code

SRC 2-D
,51 R (SW SRC);
"S14N(1) 'R (M2 SRC);
. 'R (NOP);
"R DINOP) ;
,51 RT(A) * R (SW SRC):
'S1 RT(A+1) 'R (M2 SRC);
‘R INOP);
'R DINOP);
51 - ,R (SW SRC);
"S14N(1) 'R (M2 SRC):
| 'R INOP) ;
- 'R D(NOP) ;
51« LR (SW SRC);
"S14N(1) 'R (M2 SRC): .
'R NOP);
"R DINOP) ;
SRC 2=D
s1 R (SWSRC);
814N 'R (W2- SRO);
,S14N(2) 'R (NOP);
"S14N(3) 'R (NOP);
. 'R (NOP):
| 'R DINOP) ;
S1 RT(A) LR (SW SRC);
S1 RT(A+1) 'R (M2 SRC);
,51 RT(A+2) 'R (NOP)
'S1 RT(A+3) 'R INDP):
'R (NOP):
'R D(NOP) ;
s1 R (SW SRC);
S14N(1) 'R (M2 SRC);
,514N(2) ‘R INOP);
"S14N(3) 'R (NOP):
- 'R (NOP);
'R D(NOP) ;
s1 R (SW SRC):
S1+N(1) 'R (W2 SRC);
,S1+N(2) 'R (NOP)
"S14N(3) ‘R (NOP);
'R (NOP):
"R DINOP) ;
SRC 2=4M
s1 R (SW SRC);
S14N(1) 'R (M2 SRC);

1T=8
1T=1
1T=2

IT=3

1T«0

1T=1

IT=2

T3

17=0

Ab

AS

DH

D+N (1)
D+N(2)
D+N(3)

OH

0+N (1)
O+N(2)
D+N(3)

DH RT(A)

D RT(A+1)
D RT(A+2)
D RT(A+3)

DH RT (B)
D RT(B+1)
D RT(B+2)
D RT(B+3)

P-Sequencer Micro-Code

~ N(ODD)
~’N(0D1)

S1 RT(A)
S1 RT(A+1)

" ,N(0D1)

,N(0D1)

St

S1+N(1)
,N(0D1)
,N(0D1)

Sl

S1+N(1)
,N(0D1)
+N(0D1)

yR (U3 SRC);
,R (W3 SRC);
vR (NOP);
,R DINOP) ;

(SW SRC) ¢
(W2 SRC);
(W3 SRC) s
(W4 SRC);
(NOP)

D (NOP) 3

R

R

R

R

R

R

+R (SW SRC);
,R (W2 SRC);
yR (U3 SRC);
yR (W4 SRC);
+R (NOP);

,R D(NOP);

R
R
R
R
R
R

{SW SRC) ;
(W2 SRC);
(U3 SRC) ;
(W4 SRC) ¢
(NOP) ;
D(NGP) ;

1T=1

1T=2

1T=3

1293

'P-Sequencer Micro-Code

204 .

10D1 -GENERAL , 002=REG

IDEST=QH SRC 1-0HS |, SRC 2:OHS |
52 R (SU SRC); IT=@
N(0D1) 'D (M1 SRC DEST);
S1 RT(A) R (SW SRC); 1T=l
N(0D1) 'D (S DEST);
52 R (SW SRC); !Te2

D RT(A) ,S1 RT (A) 'R DINOP) ;

: 52 ,R (SW SRC); !T=3
« D RT(B) ,S1 RT(B) +R D(NOP); :

Ab P-Sequencer Micro-Code 295

1001 =GENERAL , 002=REG
IDEST=S SRC 1=QHS SRC 2=GHS
52 ,R D(SW SRC DEST); 1T=0
S1 RT(A),S2 - ,R D(SW DEST); 1Tal
D RT(A) /52 LR D(SW SRC); !T=2
_ DRT® ,62 LR D(SW SRC); ~ !T=3
IDEST=S SRC 1=D SRC 2«5
2. LR (SW SRC); ~ !T=B
N(OD1) . 'E (2 SRC);
N (0D1) ‘D (WF DEST);
S1 RT(A),52 ,R (NOP); (Tul
S1 RT(A+1) "R D(SW DEST);
52 LR (SWSRC); IT=2
. D RT(A) ,N(0D1) 'R D(I2 SRC);
2 LR (SWSRC); !T=3
D RT(B) ,N(0D1} 'R D(M2 SRC);
IDEST=S ° SRC. 1=5 SRC 2=D
52 JE (SWSRC); !T=8
S24N(1) 'R D(W1 DEST);
S1 RT(A),S52 LR (NOP); 1T=1
524N (1) "R D(SW DEST);
52 LR (SW SRC); !1T=2
D RT(A) ,S24N (1) 'R D(NOP) ;
S2 LR (SW SRC); 1T=3
D RT(B) ,524N (1) 'R DINOP) ;
IDEST=S SRC 1-D SRC 2=D
52 ‘ 'R (SW SRC); !T=B
524N (1) 'R (M2 SRC); -
N(0D1) .0 (WF DEST);
S1 RT(A),S2 LR (NOP); iT=1
S1 RT(A+1),52+N(1),R D(SW DEST);"
52 (SW SRC); 1T=2
D RT(A) ,S24N (1) D(W2 SRC);

.R
R
S2 ,R (SW SRC); !T=3
D RT(B) yS24N(1) +R D(W2 SRC);

296

1001 =GENERAL , 0D2=REG

IDEST=D

IDEST=D

!DEST=D

IDEST=D

SRC 1=S

SRC 1=D

DH RT(A+1) .

D RT(A)

OH RT(B+1)

D RT(B)

SRC 1=5

P-Sequencer Micro-Code

~ SRC 28
52

S1 RT(A),S2

SRC 2=5

52
N(0D1)

“N(oD1)

,S1 RT(A),S2
S1 RT(A+1),N(0D1

52
,N(0D1)

W92
,N(0D1)
SRC 2=D
52
S24N(1)

S1 RT(A),S2

. S24N (1)

OH RT (A+1)

D RT(A)

DH RT(B+1)
- D RT(B)

SRC 1-D

52
+S24N (1)

vS52
,S24N (1)
SRC 2=D
52
S2+N (1)
N(0OD1)

,S1 RT(A),S2
S1 RT(A+1),52+N

OXx OX OXx O

- -

’
1 4
’

)

- 0D O

R

R

(52 DEST); T8
(WF SRC DEST);

(S2 DEST); !T=l

(WF DEST);

(SW SRC); T2
(NOP) ; ,

(SW SRC); 1T=3
(NOP) ¢

(S SRCY; 1T=8
(W2 SRC DEST);
(WF DEST)

(52 DBEST); !T=1

R D(WF DEST);

(SW SRC); !T=2

'R D2 SRC);

(SW SRC); !T=3

»R D(W2 SRC)

T oD

’
’

(SW SRC); - !T=8

(W2 SRC DEST);
- (WF DEST);

(52 DEST); !T=1

R D(WF DEST);

R (SW SAC); !T=2

'R D(NOP) ; |
R (SW SRC); !T=3

'R D(NOP) ;

LR (SW SRC); !T=B

'R (W2 SRC DEST);

‘D (WF DEST);

R (52 DEST); !T=1

(1),R D(MF DEST);

Ab

Ab l P-Sequencer Micro-Code 297

DH RT(A+1) 52 ' yR (SW SRC)s !T=2

O RT(A) "S24N(1) 'R D(2 SRC):
OH RT(B+1) ,52 | R (SWSRC); !7=3
0 RT(B) "524N(1) 'R D(2 SRC);
* |DEST=D SRC 1=4M SRC 2=0
52 R (SWSRC); !T-B
Ho ,524N (1) 'R (W2 SRC DEST);
N(0D1) 'R (U3 SAC);
N (0D1) 'R (W4 SRC);
N(0D1) 'D (WF3 DEST);
S1 RT(A),S2 R O(NOP); !T=l
51 RT(A+1),524N(1),R (NOP);
Ho .51 RT(A+2).N(OD1) .R (S2 DEST);
S1 RT(A+3) .N(OD1) .R D(WF DEST):
52 LR (SW SACY; !T«2
S2+N (1) 'R (W2 SRO);
DH RT (A+1) ,N(0D1) 'E (W3 SRO);
D RT(A) "N(0D1) ‘D (W4 SRC);
52 LR (SWSRC); !T=3
S2+N (1) 'R (2 SRC);
DH RT (A+1) N (@D1) 'E (W3 SRC);
‘0 (W4 SRC);

D RT(A) ,N(0D1)

298

' 10D1-GENERAL , 0D2=REG
- IDEST=4M

SRC 1=D

H

DH RT(A)

D RT(A+1)
D RT{A+2)

D RT(A+3)

DH RT(B)

D RT(B+1)

D RT(B+2)
D

IDEST=4U

RT (B+3}

SRC 1=4UW

DH RT(A)

1DEST=4U

D RT(A+1)
D RT(A+2)
D RT(A+3)

DH RT(B)

D RT(B+1)
D RT(B+2)
D RT(B+3)

SRC 1=D

P-Sequencer Micro-Code

6RC 2=0

+S2
"S24N(1)
N(0D1)
N(0D1)

,S1 RT(A),S52
S1 RT(A+1),82
N(0OD1)

N(0D1)

52

,52+N (1)
,N(0D1)
,N(0D1)

52
,S2+N (1)
,N{(0D1)
,N(0D1)

SRC 2=D

4
524N (1)
N(0D1)
N (0D1)
N(0D1)
N(0D1)
N{0D1)
N(0D1)

S1 RT(A),S2

S1 RT(A+1),52+N(1),

,S1 RT(A+2),N(0D
"51 RT(A+3),N(0D
N(OD1)
N(0D1)

52

S2+N(1)
,N(0B1)
,N(0D2)

S2

S2+N (1)
,N(0D1})
,N(0D2)

SRC 2=4W

- e ® e e

oMV OMIDDDODID

- . e - - w - e

- e » =

oOmMI»®I OMIUVT OMIVIT OMII

oMmMmMMXOI00D0

1)
1)

- ®© ® e w -

(SW SRC DEST);
(W2 SRC DEST):
(W3 DEST);
(W4 DEST);

(SW DEST);
(W2 DEST);
(W3 DEST);
(W4 DEST);

(SW SRC) s
(W2 SRC);
{NOP) ;
(NOP)

(SW SRC);
(W2 SRC);
(NOP} ;
(NOP) ;

IT=1

1T=2

1T=3

(SW SRC); !T=0
(W2 SRC)

(W3 SRC);

(W4 SRC);

’
’
’

(WF3 DEST)
(W2 DEST);
(W3 DEST);
(W4 DEST);

(NOP) 3
R (NOP) ;

R (SW DEST);
R (U2 DEST);
E

D

1 Txl

(W3 DEST) s
(W4 DEST);
(SW SRC); 1T=2
(W2 SRC);
(W3 SRC};
(W4 SRC);
(NOP) 3
(NOP) 5

(SW SRC);
(W2 SRCY;
(U3 SRC);
(W4 SRC):
(NOP) ;
{NOP} ;

1T=3

Ab

1T=8

Ab

DH RT(A)
D RT{A+l1)
D RT(A+2)
D RT(A+3)

BH RT(B)
D RT(B+1)
D RT(B+2)

* D RT(B+3)

P-Sequencer Micro-Code |

S2
S2+N(1)
,S2+N(2)
S2+N(3)
N(0D1)
N(0DD)

S1 RT(A),S2
S1 RT(A+1),524N(1),R

»S24N(2)
S2+N(3)
N(0D1}
N(0D1) .

S2

S2+N (1)
»S2+N(2)
+S2+N(3)

S2

S2+N(1)
+S2+N(2)
,S24N(3)

.- w w @ ®

oMoV D

R
'R
E
,0

R
R
R
R
E
0

- ® ® e w =

R
R
R
R
E
D

* ® @ ®w w -

(SW SRC) 3
(W2 SRC);
(WF DEST);
(W2 DEST);
(W3 DEST) 3
(W4 DEST);

»R (NOP);

{NOP) 3
(SW DEST) 3

(W2 DEST); .

(W3 BEST) s
(W4 DEST);

(SW SRC) s
(W2 SRC):
(NOP) 5
(NCP) ¢
(NOP) ¢
{NOP) ;

(SW SRC) s
(W2 SRC)
(NOP)
(NOP) 3
(NOP)
(NOP) ;

1T=8

1T=1

1T=2

T3

299

300 P-Sequencer Micro-Code

1001 =GENERAL , 002=GENERAL

IDEST=0H SRC 1=0HS ~ SRC 2-0HS
E (SWSRC); !T=8
NwoDl) - LR (SW SRC);
N (0D1) "R D1 SRC DEST);
S1 RT(A) LR (SWSRC); !T=l
N (0D1) 'R D(SW SRC DEST);
. E (SWSRC); !T=2
N (0D1) LR (SW SRC);
D RT(A) ,S1 RT(A) "R DINOP)
E (SWUSRC); !T=3
N (0D1) R (SW SRC);

D RT(B) ,S1 RT(B) ,R D(NOP)

Ab ‘ P-Sequencer Micro-Code

1001 =GENERAL. , 002=GENERAL

IDEST=S SRC 1=QHS SRC 2=QHS
' JE (SW SRC); !T-8
N(0D1) "R D(SW SRC DEST);
S1 RT(A) LR DI(SW SRC); 1T=1
N(0D1) ‘D (SW DEST);
E (SWSRC); !T=2
D RT(A) ,N(OD1) R D(SW SRC);
: E (SW SRC); !7=3
. D RT(B) N@D1) R D(SH SRC);
IDEST=S SRC 1=D " SRC 2«5
' : E (SW SRC); 1T=0
N(0D1) R (SW SRC);
N (0D1) 'R (M2 SRC);
N(0D1) ‘D (WF DEST);
S1 RT(A) R (SW SRC); !T=1
1 RT(A+1),N(0OD1) ,R D(SW DEST);
E (SW SRC); !T=2
N(0D1) R (SW SRC);
D RT(A) ~,N(0D1) 'R (M2 SRC):
: E (SWSRC); !T=3
, - N(0D1) R (SWl SRC);
D RT(B) ,N(0D1) R (W2 SRC);
IDEST=S SRC 1=5 SRC 2=D
E (SW SRC); !7=8
N(0D1) R (SW SRC);
R (W2 SRC):
N(0D1) D (W1 DEST);
S1 RT(A) R (SW SRC); !T=1
'R (W2 SRC);
N(OD1) ‘D (SW DEST);
E (SW SRC); !T=2
N(0D1) R (SW SRC);
D RT(A) 'R D2 SRC);
E (SWSRC); !T=3
N(0D1) R (SW SRC);
D RT(B) 'R D(M2 SRC)

IDEST=5 SRC 1D " SRC 2D .

301

302

D RT(A)

D RT(B)

P-Sequencer Micro-Code A5

N(0D1)

N{(0D1)
N(OD1)

S1 RT(A)
S1 RT(A+1)
N(0D1)
N(0D1)

,N(0D1)

N(0D1) -
NODL)

-

m>IoXMmM OIJD TIoMmIJM

(SW SRCY; !T=8
(SW SRC);
(W2 SRC);
(W2 SRC)
(WF DEST);

(SW SRC); !T=1
(2 SRC);
(WF DEST);

(SW SRCY; !T=2
(SW SRC) s
(W2 SRC);
SRC);

(SW SRC); !T=3
R (SW SRC);
E (M2 SRO);

- -

- w -

m o
o
—
=
N

"R D(L2 SRC);

Ab

10D1 =GENERAL, 002=GENERAL

P-Sequencer Micro-Code

O RT(A)

IDEST=D SRC 1-5 SRC 2=5
E
N(OD1) R
N(0D1) ED
S1 RT(A) R
N(0D1) E
D
| E
D RT(A) ,N(OD1) R
D RT(A+1) '
E
D RT(B) ,N(OD1) R
D RT(B+1) D
|DEST=D SRC 1-D SRC 25
E
N(OD1) R
N(0D1) R
N (0D1) E
N(0D1) 0
S1 RT(A) R
S RT(A+1),N(OD1},R
N(0D1) b
E
DH RT (A+1) ,N(OD1) R
D RT(A) 'N(OD1) 'R
| E
DH RT(B+1) ,N{OD1) R
D RT(B) 'N(OD1) 'R
\DEST=D SRC 15 SRC 2-D
| E
N(OD1) R
N(ODL) " E
N(OD1) D
51 RT(A) R
N(0D1) E
‘ N(0D1) i
E
DH. RT (A+1) N{ODD) R
'R D

(SW SRC) 3

1T=8

(SW SRC DEST);

(W2 DEST);

(SW SRC) 3
(SW DEST) 3
(W2 DEST);

(Sl SRC) 3
(Sl SRC) 3
{NOP) ;

(SW SRC) s
(SW SRC) 3
(NOP) 3

(SW SRC) 3
(SW SRC) s
(W2 SRC)

(W1 DEST);

(WF DEST);

(SW SRC) 3
(52 DEST);
(WF DEST);

(SW SRC) ;
(SW SRC) 3
(W2 SRC);

(SW SRC) ;
(SW SRC) 3
(W2 SRC);

(S SRCJ 3
{Sk SRC) ;
(U2 SRC) ;
(W2 DEST)
(WF DEST);

(SW SRC) ;
(W2 SRC);
(S2 ‘DEST)
(WF DEST);

(SW SRC);
(SW SRC) ;
(W2 SRC);

-e

-e

IT=1

1T=2

IT=3

1T=0

1T=1

1 T=2

1T=3

17=0

IT=l

1T=2

303

304

DH RT(B+1)

D RT(B)

10EST=D

’

IDEST=D

SRC 1=D

DH RT(A+1)
D RT(A)

DH RT(B+1)
D RT(B)

SRC 1=4M

P-Sequencer Micro-Code

,N(0D1)

SRC 2=D

N(0D1)

N(0D1)
N(0D1)

S1 RT(A)
S1 RT(A+1)
N{0OD1)

N (0D1)
N(0OD1)

,N(0D1)

N (0D1)
,N(0D1)

SRC 2=D

- N(0OD1)

DH RT (A+1)
D RT(A)

DH RT(B+1)
D RT(B)

N(0D1)
N(0OD1)
N{0D1)
N(0D1)
N(OD1)

S1 RT(A)
S1 RT(A+1)

S1 RT(A+2),N(0D
51 RT(A+3),N(0D1

N(0D1)

N(0OD1)
,N(0D1)
,N(0D1)

N(0D1)
N (0D1)

,N{0D1)
,N(0D1)

E
R
,R

E
'E

’
’
*
’
’

R
R
R
R
E
D
R
R
1)
)

- - - - -

VwOMIOM VO0BMIDM

- . w

(SW SRC}; !T=3
(SW SRC) 3
0(42 SRC);

(SW SRC); 17=0
(SW SRC)

(W2 SRC);

(W2 SRC DEST):
(WF DEST);

(SW SRC) 3 1T=1
(W2 SRC);
(52 DEST)
(WF DEST)

(SW SRC); !T=2
(SW SRC);
(W2 SRC);

D (W2 SRC);

(SW SRC); !T=3
(SW SRC);
(W2 SRC) 3

D(W2 SRC);

we we

(SW SRC); !T=0
(SW SRC);

(W2 SRC);

(W2 SRC);

(W3 SRC);

(W4 SRC);

(WF2 DEST)

(WF DEST) 3

(SW SRC); !T=1
(W2 SRC);

,R {52 DEST);

,R D{(WF DEST);

(SW SRC); !T=2
(SW SRC) ¢
(W2 SRC);
(W2 SRC);
(W3 SRC);
(W4 SRC) 3

(SW SRC) ; !T=3
(SW SRC) 3
(W2 SRC);
(W2 SRC);
(W3 SRC);
(W4 SRC) 3

Ab

&

s

‘Ab

P-Sequencer Micro-Code

!001=GENERAL,002=GENEBAL~ -

IDEST=4U

IDEST=4U

SRC 1=D

BH RT(A)

D RT(A+1)
D RT(A+2)
D RT(A+3)

OH RT (B)

D RT(B+1)

D RT(B+2)
D RT(B+3)

SRC 1=4U

DH RT(A)

-N{(0D1)

SRC- 2«D

N(0D1)

N(0D1)
N(0D1)
N(0D1)
N(0D1)
N(0OD1)

S1 RT(A)
S1 RT(A+1)
N(0D1)
N{(0D1)
N(0OD1)

N (0D1)

-

- e w e »

.- w e w e

N{(oD1)
,N(0D1)

.- ® w ° w

N(0DD)
,N(0D1)

OomMmIDMUIM OMIMIOIM OMMMID oOMMMoMm>Im

. ® @ w -

éRC 2=D

N (0D1)

N(0D1)
N(0D1)
N(0D1)
N(001)
N(0D1)
N(0B1)

. e e e v e -

S1 RT(A)

S1 RT(A+1)

.S1 RT(A+2),N(OD
S1 RT(A+3),N(OD
N(0D1)

N(001)

* . ped e w

N(0oD1)

N(0D1)
,N(0D1)

-

VIDIMIDIM OM-——DVDV OMMMIVIMDM

. -

(SW SRC) ;
(SW -SRC) 4
(W2 SRC);
(W2 SRC)
(WF DEST)
(W2 DEST)
(W3 DEST)
(W4 DEST)

e we we we

"(SW SRC);

(W2 SRC);
(SW DEST)
(W2 DEST)
(U3 DEST)
(W4 DEST)

(SW SRC) ;
(SW SRC) ;
(W2 SRC) s
(W2 SRC);
{NOP) 5
(NOP)

(SW SRC) ;
{SW SRC)
(W2 SRC);-
(W2 SRC)
(NOP) 5
{NOP) ;

we we we we

(SW SRC) ¢
(SW SRC) ¢
(W2 SRC) ;
(W2 SRC) s
(U3 SRC) s
(W4 SRC) 4
(WF4 DEST);
(W2 BEST) s
(W3 DEST)
(W4 DEST)

{SW SRC) s
(W2 SRC)

,R (SW DEST);
yR (W2 DEST);

(W3 DEST);
(W4 DEST):

(SW SRC) ;
{SW SRC) 3
(W2 SRC);
(W2 SRC);
(W3 SRC);

1T=8

IT=1

1T=2

T3

1T=8

1T=1

1T=2

305, -

306

IDEST=4U

T(A+1)
T(A+2)
T (A+3)

coo
pafeale:

DH RT(B)

D RT(B+1)
D RT(B+2)
D RT(B+3)

SRC 1=D

- DH RT(A)

D RT(A+1)
D RT(A+2)
D RT (A+3)

DH RT(B)

D RT(B+1)
D RT(B+2)
D RT(B+3)

P-Sequencer Micro-Code-

+N(0D1) 'R
E
D
E
N(0D1) 'E
N(0OD1) R
,N(0D1) R
,N(0D1) R
,E
,D

SRC 2=4U
E
N(OD1) R
' E
N(0D1) R
'R
= 'H
N(0D1) E
N(0D1) WE
N(OD1) ,E
N (0D1) .
S1 RT(A) R
S1 RT(A+1) 'R
.’R
R
N (0D1) JE
N(0D1). ,E
N(OD1) . yE
N(OD1) .0
E
N (0D1) ,R
E
N(CD1) R
R
R
,E
0
E
N(CD1) R
E
N(0OD1) R
R
R
vE
0

WF DEST)
" (W2 DEST)

{4 SRC);
(NOP) 3
{NOP) ;
(SW SRC):
{SW SRC);
{2 SRC);
(U2 SRC);
{W3 SRC);
(W4 SRC);
(NOP) ;
(NOP) ;

(SW SRC) 3
(SW SRC);
(W2 SRC};
(W2 SRC);
(W3 SRC)
(W4 SRC);

(W3 DEST)
(W4 DEST)

(SW SRC);
(W2 SRC);
(W3 SRC);
(W4 SRC);
(SW DEST)
(W2 DEST)
(W3 DEST)
(W4 DEST)

(SW SRC);
(SW SRC) ;
(W2 SRC);
(W2 SRC);
(W3 SRC);
{4 SRC);
{NOP) 3

(NOP) ;

{SW SRC);
(SW.SRC) ;
(W2 SRC);
(W2 SRC);
(W3 SRC);
(W4 SRC)
(NOP) ;

{NOP) ;

ws we wo we

- we we we

1T=3

1T=0

1T=1

1T=2

IT=3

A5

307

AS6. 1-Sequencer Micro-Code Fields

$ADD F<0:5> k YADDRESS AR!THHETIC ADDER FUNCTION LINES
1 (F<@> IS THE MODE CTR, F<l:4> IS THE FUNCTION
! AND F<5> IS THE CARRY IN)

* A+Q =0

A+l =]

A+B =12

A+B+1 =13

A-B-1 =18

A-B =19

Ax2 : =24

Ax2+1 =25

A-1 - =30

NA ’ =32

NA AND B - =34

NA AND NB =36

Z =38

NA OR B =40

B =42

A XNOR B =44

A AND B =46

NA OR NB =48

A XOR B =508

NB =52

A AND NB =54

MINUS ONE =56

AORB =58

A OR NB =60

A =52
$ADD LEG A<B:1> ICONTROLS LEG A ON ADDRESS ARITHMETIC ADDER
* =0 IPRE-FETCH PC. USED BY INSTR QUEUE LUOGIC

INDEX REG =1 IINDEX REG FILE.

LSl 11 =2 IDATA FROM LSI-11

=3 IWRITE DATA BUS. ONLY USED BY HARDWARE
$ADD LEG B<B:2> ICONTROLS LEG B ON ADDRESS ARITHMETIC ADDER.
% =0 IBRANCH OFFSET FOR SHORT PC RELATIVE BRANCHES
' S0 =1 - ISHORT OPERAND OFFSET :
VAR BASE =2 IVARIABLE BASE OFFSET
FIX BASE =3 IFIXED BASE OFFSET

C BLOCK ADR =4 ICACHE MISS BLOCK ADDRESS
T =7 !T REGISTER

308

$ADD LOAD IND REG

x

8ADD RIGHT SHIFT 8 BITS

X

$C ADR SEL

x

$C CLEAR HOLD MISS

*

$C FETCH

x*

8C OPERATION

L 3

$C W CHECK

%

8C W SET NUM<B:1>

*

-0
-1

=8
=1

=0
=1

=8

=1

=0

=1

=0
=1

=0
=1

=0
=1
=2
=3

I-Sequencer Micro-Code Fields Ab

ILDAD THE INDIRECT BIT AND INDEX REGISTER FIELD
IFROM THE INDIRECT ADDRESS POINTER COMMING OUT
IOF THE INDEX REGISTER FILE INTO A SPECIAL
IREGISTER FOR THEM.

IRIGHT SHIFT THE OUTPUT OF THE ADDRESS
'ARITHMETIC ADDER BY 8 BITS.

IALLOW LONG IMMEDIATE CONSTANTS TO BE USED
IFEED THE CACHE ADDRESS INTO THE LONG IMMEDIATE
ICONSTANT FIELD OF THE "OUT A"™ AND "OUT B" -
tMULTIPLEXERS

ICLEAR THE HOLD CACHE MISS REGISTER
ITHE CURRENT MEMORY READ IS FETCHING AN INSTR
I THE CURRENT NICROINSTRUC]UN IS USING THE CACHE

ICHECK THE CACHE TO SEE IF A WORD IS THERE SO
ITHAT IT MAY BE WRITTEN IN THE FUTURE

- ISPECIFIES A SPECIFIC CACHE SET TO BE WRITTEN

IINTO. THIS IS ONLY USED BY DIAGNOSTIC PROGRAMS

AS

$C W SET SRC SEL
X

LRU
$DISABLE EWAR CHMP.

*x

.

-$EBOX W ADR 1S A REG

x .

$1B0X C W
%

v

$1BOX REG W

% -

$1MMED CONST LONG

*

$INDEX REG ADR SEL<@:2>

% USER

0D
VB REG
IND

T

=0
=1

=8
-1

=0

=]

=B
=1

2

=1

=0
=]

=0

=]
=3
=4

=6

I-Sequencer Micro-Code Fields

INRITE INTO THE CACHE SET GIVEN BY

1"C W SET NUM<B:1>"

'WRITE INTO THE LRU CACHE SET

IDISABLE THE EBOX WRITE ADDRESS REGISTER ©

IUNTIL IT IS SET AGAIN.

'1S A REGISTER ADDRESS

ICAUSES THE 1BOX TO WRITE THE "W DATA"

ILINES INTO THE CACHE.

ICAUSES THE 1BOX TO WRITE THE "W DATA"
ILINES INTO' THE REGISTER FILE(S)

ILONG IMMEDIATE CONSTANT
ISELECTS THE SOURCE FOR THE ADDRESS OF THE

IINDEX REGISTER FILE

I"REG SET<P:1>:REG R ADR A<B:4>"
USER’S REGISTER SPECIFIED BY THE MICROCODE

1"REG SET;8:1>:UD REG ADR<B:4>"
I"REG SET<@:1>:IRS<6:10>" VARIABLE BASE IND R
I"REG SET<@:1>: IND INDEX REG ADR<8:4>"

I"Z%2:REG R ADR A<B:4>"

11BOX TEMPORARY REGISTERS

309

ITHE EBOX WRITE ADDRESS TO BE PUT IN THE EWARS

310

 $INSTR OUT A

*

'$LOAD AT LRU DECODE RAM

*

$LOAD C LRU DECODE RAM

X

SMEM R

*x

$MEM START R

*

$MEM START W

E

8MIC BR ADR<B:11>

X

$MIC BR SEL<8:2>
| START

x MIC BR

$MIC COND SEL<@:2>

*

=1

=0
=1

=0
=1

-8
-1

=0
=1

=9
=1

=0

=0
=1

I-Sequencer Micro-Code Fields

ISAYS THAT AN INSTRUCTION IS BEING READ
I0UT OF "OUT A", AND TO PUT IT IN THE
'INSTRUCTION QUEUE.

ISTART A MEMORY READ THROUGH THE SWITCH

IMICRO BRANCH ADDRESS

1P 1BOX START ADR<8:11>"
I"MIC BR ADR<@:11>"

Ab

a

A6

$MIC EN INT

3

$MIC JSR

x
$OUT SEL<@:1>

C
* REG
CONST

8REG R ADR<B:4>

X

$REG M ADR<8: 4>

E 3

SREL INTERPROC INT

E

SRESET INSTR QUEUE

*

$SET C MODIFY BIT

NO
* .
$SET EWAR:
.

=8
=1

=0
=1

=0

=]

€2

=0

=0

=0
=l

=0
=]

=0
=1

=0
=1

1-Sequencer Micro-Code Fields 311

'ENABLE MICRO INTERRUPTS

D0 A JUMP TO SUBROUTINE

ISELECTS THE SOURCE FOR THE READ ONLY DATA
ITHE "OUT A" OR "OUT B" LINES.

IDATA BEING READ OUT OF THE CACHE
ISOURCE A REGISTER
g{gﬂgg%ATE CONSTANT OR CACHE ADR IF C ADR SEL

IREGISTER READ ADDRESS

IREGISTER WRITE ADORESS

I INTER PROCESSOR INTERRUPT HAS BEEN SERVICED.
IALLOW THE SWITCH TO SEND ANOTHER!

ICLEAN IT OUT

IDON'T SET CACHE MOBIFY BIT IF WRITE

ISET EBOX WRITE ADDRESS REGISTER TO THE
'ADDRESS OF THE WORD BEING READ OUT OF THE
ICACHE NOW. ' '

312"

$SET OP

K

$SRC REG CTL<B:1>

* * REG ADR
oDl
ADD
8SRC REG OUT SEL
* A '
B

$SWITCH START W

*

$T R ADR<®:2>
3

$T W ADR<B:2>
X

$TRANS ADR

X

QpPDATE AT LRU BITS

*x

SUPDATE C LRU BITS

*

g8 TRANS

*x

=B
=1

=1
=2
=3

B

=]

=0
=1

=0

=0

=0
=1

=0
=]

=0

=1

=0

=1

I-Sequencer Micro-Code Fields | - A6

'SET EBOX OPERAND REGISTER

'SRC (A DR B) REG ADR="REG R ADR<@:4>"
="001 REG ADR<@:4>" <
=SUM OF ABOVE TWO FIELDS

ISTART A MEMORY WRITE THROUGH THE SWITCH.
!T REGISTER STACK READ ADDRESS

IT REGISTER STACK WRITE ADDRESS

'D0 A VIRTUAL TO PHYSICAL ADDRESS TRANSLATION
!ON THE MEMORY ADDRESS

IDON’T TRANSLATE THE MEMORY ADDRESS - DO
{ABSOLUTE MEMORY ADDRESSING

IUPDATE THE ADDRESS TRANSLATION LRU BITS
'UPDATE THE CACHE LRU BIT

'WRITE INTO THE ADDRESS TRANSLATION CACHE

%A+B (LEG)
%B (LEG)

%BR

%CR

%CR OP<F (F)
%CR OPeR+F (S,F)
%CR OP«RS (SEL)

" %CR OPRS+F (SEL,F)
~ %CR ReF (F) |

%CR R<R(D,S)

%CR R«R+F (D, S,F)

%CR R<RS (D, SEL)

-%CR ReRS+F (D, SEL,F)

%IND REG
%INDEX TRANS (SEL)
% INDEX (SEL)

%REG W (ADR)
%TR(S)

%TH (D)
LTWR(D,S)

ATeF (F) -
4TeR(D,S)
LTeR+F (D, S, F)
%TRS (D, SEL)
%TeRS+F (D, SEL, F)

313

A7. 1-Sequencer Micro-Code Macros

[ADD F=A+B,ADD LEG B=LEG]

(ADD F=B,ADD LEG B=LEG)

(MIC BR ADR)

[C.GPERATIONal,UPDATE C LRU BITS=1,0UT SEL=C]
[CR,SET OP=1, INDEX TRANS(T),ADD F=B,ADD LEB B=F)
[CR,SET OP=1,REG R ADR=S, INDEX TRANS(T),A+B(F)]
[CR,SET OP=1,INDEX TRANS(SEL)]

[CR,SET OP=1, INDEX TRANS(SEL),A+B(F)]

[CR,REG W(D),B(F), INDEX TRANS(T))

{CR,REG N(D).INDEX TRANS (T) ,REG R ADR=S]

[CR,REG W(D),A+B(F), INDEX TRANS(T),REG R ADR=S)

ICR,REG W{D), INDEX TRANS (SEL)]

[CR,REG W (D), INDEX TRANS(SEL),A+B(F)]

[ADD LOAD IND REG=1]

[ADD LEG A=INDEX REG,TRANS ADR=1,INDEX REG ADR SEL=SEL)
[ADD LEG A=INDEX REG,INDEX REG ADR SEL=SELJ

[1BOX REG W=1,REG W ADR=ADR]

[T R ADR=S]

(T W ADR=D]

T, TR(S))

(TW(D),B(F}]

[T (D), INDEX(T),REG R ADR=S)
[TW(D),A+B(F), INDEX TRANS(T),REG R ADR=S)
[TW (D), INDEX(SEL)]

(TW(D), INDEX(SEL),A+B(F})}

314

A8. I-Sequencer Micro-Code

IEVALUATE A SHORT OPERAND (X=8)

IREG=0, [=8 REGISTER-DIRECT
SET OP=1,SRC REG CTL=00,0D0NE
IREG=0, I =1 REGISTER-INDIRECT
CR ReRS(R1,00),TW(T1),IND REG,JSR(REG IND OP)
!REG;1,1=0 SHORT-CONSTANT
SET OP=1,0UT SEL=CONST,DONE
IREG=1, =1 ILLEGAL

BR=ILLEGAL OP

IREG=2 1LLEGAL

BR=ILLEGAL OP
IREG=3-31,1=8 . SHORT-INDEXED

CR OP«RS+F (0D, S0) , DONE
IREG=3-31,1=1 SHORT-INDEXED- INDIRECT

CR ReRS+F (R1,00,50), JSR(MEM IND OP)

A8 - : , 1-Sequencer Micro-Code 315

TEVALUATE A LONG OPERAND WITH A FIXED BASE (X=1,X1=8,M=0,V=8)

|REG=8,1=0 REGISTER-DIRECT
CR OP«RS+F (0D,FIX BASE),DONE;
IREG=8, I =1 REGISTER-INDIRECT

CR ReRS(R1,00),TW(T1),IND REG, JSR(REG IND);
CR OP«R+F (R1,FIX BASE), INDEX SHIFT,DONE;

\REG=1, 1=8 LONG-CONSTANT
. SET OP=1,0UT SEL=CONST, IMMED CONST LONG=1,DONE;
|REG=1, I=1 LONG ABSOLUTE ADDRESSING
CR OP«F (FIX BASE),DONE;
|REG=2 ILLEGAL |
BR=ILLEGAL OP;
IREG=3-31,1=8 SHORT-INDEXED

CR R«RS+F (R1,00,50);
BR=L1; 'WAIT FOR CACHE READ

IREG=3-31,1=1 SHORT-INDEXED-INDIRECT
CR Re<RS+F (R1,00,50), JSR(MEM IND);
L1: CR OPeR+F (R1,FIX BASE), INDEX SHIFT,DONE;

316 I-Sequencer Micro-Code A8

IEVALUATE A LONG OPERAND WITH A VARIABLE BASE (X=1,X1=8,M=0,V=1)
IREG=0, | =0 REGISTER-DIRECT

T«RS+F (71,00, VAR BASE).INDEX SHIFT; .
CR OP«RS+F (VB REG,T),TR(T1),DONE;

s IREG=0, [=1 REGISTER-INDIRECT
' CR ReRS(R1,0D), TU(T1), IND REG, JSR(REG IND)~
A I e
 IREG=1,1-8 LONG-CONSTANT
| SET OP=1,0UT7 SEL=CUNST.iNMED CONST LONG=1,DONE;
 IREG=1,1=1 LONG ABSOLUTE ADDRESSING
CR OP«RS+F (VB REG, VAR BASE),DONE;
'REG=2 TLLEGAL
. BR=ILLEGAL OP;
IREG=3-31,1=8 ~ SHORT-INDEXED

CR Re<RS+F (R1, OD S0} ;
BR=L1; -

'REG=3-31,1=1 SHORT-INDEXED-INDIRECT
CR ReRS+F (R1,00,50}, JSR(MEM IND);

L1: TeR+F (T1,R1,FIX BASE), INDEX SHIFT;
CR OP«RS+F (VB REG,T),TR(T1),DONE;

A8 I-Sequencer Micro-Code 517

IEVALUATION OF AN INDIRECT ADDRESS CHAIN WITH THE RESULT PUT IN R1.

MEM IND:NDP : - ; IGO INDIRECT THROUGH A MEMORY LOC.
CR R<R(R1,R1),TH(T1), IND REG; '
INDRET (R181,RI18,RI11)

REG .IND: IGO INDIRECT THROUGH A REGISTER.
INDRET (RIB1,RI18,RI11);

RIB1: CR ReR(R1,R1),TW(T1),IND REG; 'R=8, I=1
-INDRET (RI®1,RI18,RI11);

RI18: CR ReRS+F (R1,IND,T),TR(T1); !R=0, 1=0

: RETURN;

RI11: ﬁgPReRS+F(R1,IND.T).TR(TI); IReB, =1

CR R«R(R1,R1),TW(T1),IND REG;
INDRET (R191,RI118,RI11);

318 ,

A9. E-Sequencer Micro-Code Fields

$AQ1 SEL<0:2> IMMXCTL. CSACTL. SELECT CSA A1 INPUT.

L NA :a
NA%2 =]
A =
Ax2 =
MINUS ONE =4
Z =6
$A23 SEL<B:2> ‘ IMMXCTL. CSACTL. SELECT CSA A23 INPUT.
NAx4 =8
NA%8 , =1.
Ax4 =2
Ax8 . =3
MINUS ONE =4
Y4 =6
$AUTO MERGE IMXMRG2. EN MEANS IBOX CONTROLS MERGE
] DIS =0 IMERGING UNDER EBOX CONTROL

EN =1 IMERGING UNDER 180X CONTROL

‘A9

$B8C SEL<B:5>

SW IN BOUNDS

SW N

SWZL

SW VL
SW CO
SW LE
FLOAT FIX L

NEVER
PRE V L
POST V L
EXP N
EXP V L

PAUSE EBOX
MANT Z L
MANT V L
I ALL Z
F ALL Z
B ALL Z
COUNT DONE

E-Sequencer Micro-Code Fields

'|EBCMUX. BRANCH CONDITION SELECT

=B
=2
=3
=4
=5
=6
=7

=8

=9

=10
=11
=12
=13
=14
=15

=16
=17
=18
=19
=208
=21
=22

319

320

SW IN BOUNDS L
SWNL

SW Z

SW V.

SW CO L

SW LE L

FLOAT FIX

ALWAYS
PRE V
POST V
EXP N L
EXP V

PAUSE EBOX L -
MANT Z

MANT V

I ALL Z L
FALZL

B AL ZL
CQPNT DONE L

$BR ADR<@:11>

x

$BR DEST<@:2>

*

RETURN

START
BRANCH
SHIFT

. FA
FIXREG
ALU COND

E-Sequencer Micro-Code Fields

=32
=33
=34

=35

=36
=37
=38
=33

=40
=41
=42
=43
b4
=45
=46
=47

=48
=43
-50
=51
=52
=53

- =54

=0

=0
=]
=2
=3
=4
=5
=5

IEBXCTL. BRANCH ADDRESS

' IEBXCTL. BRANCH CONTROL

A9

A9

$BR NWAY<B:1>

2 WAY
4 WAY
8 WAY
x 16 WAY
$BYTE PTR PE
* HOLD
LOAD
$SW CO PE
' HOLD
* LOAD
$COND STATUS PE
x HOLD
LOAD
$COND STATUS SEL
x COND CODES
MC
$DONE

X

$EBOX CONTROL PE

x HOLD
LOAD

SEXP COMPL

t

$EXP SUM PE

* HOLD
LOAD

=0
=1
=2
=3

=0

=] .

=0
=]

=0
=1

=0
=1

=6
=1

=0
=]

=0
=1

=0

=]

E-Sequencer Micro-Code Fields

IEBXCTL. NUMBER OF BRANCH DESTINATIONS

1 TWO-WAY BRANCH
'FOUR-WAY BRANCH
TEIGHT-WAY BRANCH
ISIXTEEN-WAY BRANCH

ISHFCTL. LOAD QW2 AND QW3 OF R

IFACTL. LOAD SW CO

ISTATUS. LOAD CONDITION CODES

ISTATUS. SELECT STATUS TO SAVE
INORMAL CONDITIONS CODES

IMICRO-CONSTANT

IFIXGEN. LAST MICRO-CYCLE
IEBOX2. LOAD CONTROL BITS FROM I1BOX.
TEXPBOX. COMPLEMENT EXPONENT

IEXPBOX. LOAD EXP SUM REGISTER

321

322

$FA A IN SEL<@:3>

x

$FA B 'IN SEL

b

B
S

$FA CTL SEL<B:2>

X

*

EBOX
D1V
RND
MULT
SAVED CO

"GUARD

CO STATUS

E-Sequencer Micro-Code Fields | . A9

13INADD. SELECT FOR FA A LEG

=0

=1

=2

=3

=4

=8

=9

=10

=11

=12
13INADD. SELECT FOR FA B LEG

=B 0P B

=] ISUM OUTPUT FROM CSA
IFACTL. SELECT FA CTL SOURCE

=B

= - IDIVISION

=2 'ROUNDING

=3 IMULTIPLY

=4 1ADD CARRY (SAVED)

=5 tADD GUARD

=6 1ADD CO FROM STATUS WORD

=7

A9

$FA CTL<B:5>

x

A+9
A+l
A+B
A+B+1
A-B-1
A-B

. A%2

Ax2+1
A-1

NA
NA AND B

NA AND NB

zZ
NA OR B
B

A XNOR B

A AND B

NA OR NB
A XOR B
NB

A AND NB
MINUS ONE
ACRB

A OR NB
A

S$FIXUP EN

i x

DIS:
EN

‘E-Sequencer Micro-Code Fields

=0
=]
=12

=13

=18
=19
=24
=25
=30

=32

=34

=36"
=38 -
=48 .

42
=44
=46
=48
=50
=52
=54
=56
=58
-60
=62

=0
=1

IFACTL. FA MODE/FUNCTION CONTROL

IFIXREG. ENABLE FIXUP IF DONE

323

324

" $FIXUP REG SEL<B:3>

x NEVER
ALWAYS

PRE V
MANT Vv
'SW Z

SW IN BOUNDS

FLOAT FIX

$FIXUP REG TEST

% NO REG

REG
8FIXUP REGS CLK EN-
* ~ DIs

EN
$FIXUP REGl CLK EN
% BIS

EN

$FIXUP REG2 CLK EN

K DIS
EN

$FIXUP REG3 CLK EN
* DIS

EN

E-Sequencer Micro-Code Fields A9

=0
=1
=2
=3
=4
=5
=6
=7

=8
=3

=11
=12
=13
=14

=15

=0
-1

=0
=1

=B
=1

=0

=1

=0
=]

R

IFIXREG. SELECT FIXUP REGISTER INPUT

IFIXREG. ENABLE TESTING QF FIXUP REGISTERS
IFIXREG. ENABLE SETTING FIXUP REG 8
IFIXREG. ENABLE SETTING FIXUP REG 1
IFIXREG, ENABLE SETTINC FIXUP REG 2

IFIXREG. ENABLE SETTING FIXUP REG 3

A9

$G SEL<D:3>
BZC
ADD
POST
BIVIDE
z

* HOLD

S$INTERRUPT 180X

i NEVER
NO FIX
$JSR
%

SLOGICAL SHIFT

x

$11C COND<@: 3>
3

8MC EXP<@:11>
x

$M1C REPT<0:7>
E

8MC SHIFT<@:5>
*

$MC<0: 35>

X .
$MERGE EXP

%

~ E-Sequencer Micro-Code Fields

=B
=1
=2
=3
=4
=8

=0

=1

=0

=]

=]

=0

=0

=0

=0

=B

=0
=1

IROUND. SELECT GUARD BIT INPUT AND MODE.
~ 'USE BOTTOM ZEROES COUNT (EG. IN PRENORM)

IFLOATING ADD
IPOSTNORMAL 1ZATION
'FLOATING DIVIDE
ICLEAR

'HOLD

'FIXGEN.

HIFF NO FIXUP
'EBXCTL. JUMP TO SUBROUTINE

'JMP OR RET.
tJSR

ISHFCTL. LOGICAL/ARITHMETIC SHIFT

IDRAG BIT IS SHIFT SIGN
IDRAG BIT IS SIGN OF SHIFT A IN

ISTATUS. CONDITION MICRO-CONSTANT
IEXPBOX. EXPONENT MICRO-CONSTANT
IREPT. REPTITION MICRO-CONSTANT
ISHFCTL. SHIFT MICRO-CONSTANT
|3INADD. EBOX HICROdeNSTANT

IMXMRG1. FOR EXP USE (MM SEL OR 1)

396

$MERGE LEN

% au
Hu

SMERGE QWO

X

SMERGE QW1

x

$MERGE QW2

L 3

$MERGE QW3

*

sMM EN
DIS

* «+ EN

$MM SEL<B:2>

x FA
SHIFT
EXP

. FA/2
MUL
DIV

$MULT EN

%* DIS
EN

80P A ADR<B:4>
* Z

=0
=1

=9
=1

=0
=1

=0
=]

=0
=1

=P
=1
=2
=3
=5
=6

=0
=1

=9

E-Sequencer Micro-Code Fields A9

IMKIRGZ. QW OR HA MERGE.

INKMRG2. FOR QB USE (MM SEL OR 2)

IMXMRG2. FUR‘QH} USE (MM SEL OR 2)

IMKIRG2. FOR QU2 USE (MM SEL OR 2)
" IMXYRG2. FOR QW3 USE (MM SEL OR 2)

IMXIRGL. ENABLE MUX MERGER ouTPUT

IMXMRGL. SELECT MUX MERGER

IMMXCTL. ENABLE MULTIPLY OPERATION

'Q REGISTER CONTROLS 3-INPUT ADDER
IERFC1. EBOX A REGISTER ADR
IGARBAGE REGISTER

AS

$OP B ADR<B:4>

x . Z
$0P W ADR<B:4>
%* Z
$POST MAX PE
* HOLD
LOAD
8PRE EN
* DIS
EN
$PRE MAX PE
% HOLD
LOAD

$Q MODE<8:2>

.

% LOAD
RIGHT 1
LEFT 1
HOLD
RIGHT 4

SRECOMP ABL
%
SRECOMP A23

x

=0
=0

=0

=1‘

=0
=1

=8
=1

=0
=]
=2
=3
=4

=0
=1

=0
=]

E-Sequencer Micro-Code Fields ' : 327

IERFC1. EBOX B REGISTER ADR’
!GARBAGE REGISTER

'ERFC1. EBOX WRITE REGISTER ADR
!GABBARGE REGISTER

ISTATUS. LOAD MAX POSTNORM AMOUNT

‘!SHIFTR/SHFBOX. ENABLE PRENORMALIZATION

ISTATUS. LOAD MAX PRENORM AMOUNT

Q. CONTROL LINES TO Q REG

'PARALLEL LOAD
ISHIFT RIGHT 1
ISHIFT LEFT 1
HOLD

ISHIFT RIGHT 4

'CSACTL. COMPLEMENT A LEG OF CSA

ICSACTL. COMPLEMENT B LEG OF CSA

328

$REPT CTR MODE<®8:1>

LOAD

DEC
* HULD
$REPT CTR SEL

FA
% : MC
$RESULT SEL

ALWAYS

NO BRANCH
T % NEVER

DONE

NO FIX
8RLSB PE

HOLD
* .LOAD
$RND MODE<@:1>

STABLE

CEILING
% FLOOR
8SHIFT A IN SEL<B:1>
* A

Z

BAQZM SIGN

$SHIFT B IN SEL<@:2>

* B
A
Q

DON
>

| E-Sequencer Micro-Code Fields _ A9

=]

=3

=9
=1

=0

=2
=3

e

=0
=1

=8
=]
=2

=0
=2
=3

=2
=3
=4

=5
=7

'REPT. REPITITION CTR MODE

IREPT. SELECT FA CTR OR MC CTR
IFA CTR

IMICRO-CONSTANT CTR

IFIXGEN. CONTROL X RESULT SIGNAL

'RESULT ALWAYS READY

IRESULT READY IFF NOT BRANCH

'RESULT NEVER READY

IRESULT READY IFF DONE AND NOT FIXUP
IRESULT READY IFF NOT FIXUP

IROUND. LOAD LS BIT OF R<B:35>
IROUND. ROUNDING MODE

ISHFBOX. SELECT SHIFTER A INPUT

'A INPUT GETS A OP
'A INPUT GETS ZERO
'A INPUT GETS BAQZM SIGN

ISHFBOX. SELECT SHIFTER B INPUT

IMERGE GUARD BITS
IMERGE GUARD BITS
IMERGE GUARD BITS
IMERGE GUARD BITS

A9

$SHIFT CTL<B:6>
FzC

V4

C28 BYTE LEN
C28 BYTE POS
€20 B QW3
EXP SUM
RIGHT 1

MC

B BYTE LEN

B BYTE POS

B QW3

DEST

1Z2C

36-C20 BYTE LEN
36-C28 BYTE POS

36-C28 B QW3
36-EXP SUM

36-B BYTE LEN
36-B BYTE POS

36-B QW3
POST
$SHIFT SIGN

3

$TEST STICKY EN

DIS
% _ EN
$TEST WRONG BRANCH
%* DIS
’ EN
8TRANS A SEL<@:1>
% SW

FLOAT

au

HW

E-Sequencer Micro-Code Fields

=0

=16
=18
=20
=20
=22
=24
=26
=28
=29
=29
=306

=32

=58
=52
=52
=54
=60
=61
=61

=68

-
=1

=0
=1

=0
=1.

=0
=1
=2
=3

ISHFCTL. SELECT SCNT SOURCE

1901
601
1901

1881
1901
801
1601
1981

1901
1618

1011
811

811
1811
1811

0000
0610
9100

p118
1008
1010
1108
1161

1110
0000

0010
0168

p11e
1100
1161

g11 1161
108 0188 POSTNORMALIZE.
ISHFCTL. DRAG BIT FROM EBOX MICRO-CODE

'DRAG BIT=8
!DRAG BIT=1

ISTICKY. TEST BZC236-LSHF-2
IWRONGB. TEST WRONG BRANCH TAKEN

IEREGF. A OP TRANSLATION SELECT

ISTRAIGHT THROUGH

!SIGN EXTEND FLOATING POINT
'QW TRANSLATION

'HW TRANSLATION

329

330

$TRANS B SEL<B:1>

* SuW
FLOAT
QW

_ HW

SUSE»I A»UP

* ‘

SUSE I B OP

. .

"$XBOX A SEL<B:1>

A EXP
EXP SUM
* , HOLD

=0
=]
=2
=3

=0
=1

=0
=]

-1
=2

E-Sequencer Micro-Code Fields ‘A9

IEREGF., B OP TRANSLATION SELECT
'STRAIGHT THROUGH

ISIGN EXTEND FLOATING POINT

QW TRANSLATION

IHW TRANSLATION

'EREGF. USE IBOX A OP INSTEAD OF R

IUSE R
IUSE 1BOX OP

'EREGF. USE IBOX B OP INSTEAD OF R

"1USE R
{USE 1BOX OP

IEXPBOX. SELECT XBOX ALU A LEG

* 1LOAD A EXP

!LOAD EXP SUM
THOLD

A9

$XBOX ALU CTL<B:5>

A+8
A+l
A+B
A+B+l
A-B-1
A-B
Ax2
Ax2+1
A-1

NA

NA AND B
QA AND NB
NA OR B
B

A XNOR B
A AND B
NA OR NB
A XOR B
NB

A AND NB

MINUS ONE

AORB
A OR NB
A

$XBOX B SEL<@:1>

%
$XBOX SCNT SEL<B:1>

L 3

B EXP
SCNT/MC
HOLD

MC
SCNT
* HOLD

E-Sequencer Micro-Code Fields

=54
=56
=58
=60
=62

=0
=1
=2

=8

=2;

JEXPBOX. EXPBOX ALU MODE/FUNCTION

IEXPBOX. SELECT XBOX ALU B LEG

'LOAD B EXP
ILOAD EXP SUM
THOLD

IEXPBOX. XBOX SCNT REG SELECT
ILOAD MC

'LOAD SCNT
THOLD

331

332

A10. E-Sequencer Micro-Code Macros

%AUTO MERGE (
SHIFT(A,Z,DEST),
FA(Z,B, B),
AUTO MERGE ENB, MM SEL=FA]

%BR NZ DEC(CTR,ADR) [
"BR DEST=BRANCH
BC SEL=COUNT DONE L,
BR ADR="ADR",
REPT CTR SEL="CTR",
REPT CTR MODE=DEC]

%BR Z DEC(CTR,ADR) [
BR DEST=BRANCH
BC SEL=COUNT DONE,
BR ADR="ADR",
REPT CTR SEL="CTR",
REPT CTR MODE=DEC)

%BR (COND, ADR) [
' BR DEST=BRANCH,
BR SEL="COND",
BR ADR="ADR"]

%CHECK BOC(R) {
.~ CSA A IN Ax2,CSA B IN Z,
FA{A,S,A+B),
FIX SAVE(SW Z,"R")]

%CSA(A,B,CI [
ABl SEL="A",
A23 SEL="B"
. FA A IN SEL="CI"]

%DBONE (COND) (
OP W ADR=IW,
BR DEST=START,
BR SEL="COND",
DONE=1]

%FA SEL (SOURCE) [
FA CTL SEL="SOURCE"]

%FA(A,B,C)
FA IN("AII'"B")’
FA CTL="C"]

IMERGE BACK QW OR HUW

ISHIFT A LEFT AS PER ADDRESS
'PUT B THROUGH FA

IMERGE A INTO B

'REPT. BRANCH NOT ZERO AND DEC
ISET UP BRANCH ADDRESS MUX
IBRANCH IF COUNT NOT DONE

170 BRANCH ADDRESS

ISELECT COUNTER OUTPUT
IDECREMENT SELECTED COUNTER

!REPT, BRANCH NOT ZERO AND DEC
ISET UP BRANCH ADDRESS MUX
IBRANCH IF COUNT DONE

170 BRANCH ADDRESS

ISELECT COUNTER OUTPUT
!DECREMENT SELECTED COUNTER

{BRANCH TO ADR IF COND IS TRUE
ISET UP BRANCH ADDRESS MUX
ISET UP BRANCH CONDITION MUX
PINPUT TO BRANCH ADDRESS MUX

ICHECK FOR POST BAD ONES COUNT
ICSA GIVES (Ax2) XOR A

'Ax2 1S ON A LEG, A IS ON Cl LEG
'FIXUP TO R IFF

P A+ ((Ax2) XOR A)=8

ISELECT CSA A, B, AND CI LEGS
TAB1 SEL CONTROLS THE A LEG

1A23 SEL CONTROLS THE B LEG

IFA A IN SEL CONTROLS THE CI LEG

IDONE 1FF COND

IMAKE SURE IW 1S WRITE ADDRESS
ISELECT START ADR ON ADR MUX
ISET UP BRANCH CONDITION MUX
'DONE IFF COND

ISELECT SOURCE OF FA CTL

ISELECT FA A IN, FA B IN, FA CTL

AlO E-Sequencer Micro-Cade Macros 333

%F IXUP lNIT[
FIXUP REG SEL=NEVER,
FIXUP REGB CK EN=1,
FIXUP REG1 CK EN=1,
FIXUP REG2 CK EN=1,
FIXUP REG3 CK EN=1]

%F IXUP SAVE (COND,R) (
FIXUP REG SEL="COND",
FIXUP REG"R" CK EN)

%*F IXUP (REG?, COND, ADR) [
BR DEST=START,
BR ADR="ADR",
FIXUP REG SEL="COND",
FIXUP REG TEST="REG?",
FIXUP EN=1]

%FLOAT SU OUT (R,FIX R, ADR)[
OPS(1UW, "R" Z), :
XA (A- B)
SHIFT(A,Z.Z).ReSHIFT.NERGE EXP=1,
FA(A,B,A+8),LOAD COND,
FIXUP SAVE (FLOAT FIX,"FIX R"),
FIXUP (REG,FLOAT FIX, "ADR"),
DONE (ALWAYS) ,RESULT(NO FIX)]

%FLOAT SW POST(A,B,FIX R) [
SHIFT("A” "B" POST) ,ReSHIFT,
CHECK BOC ("FIX R"),

G SEL=POST,
XBOX SEL (EXP SUM, SCNT/MC, SCNT))
%*HOLD COl
CO COND PE=HOLD]
%IAL 2}
%181(3]
%1CI(4]
%1D¢ 5]

%IW 2]

ICLEAR ALL FIXUP REGISTERS
ISELECT FIXUP MUX TO CLEAR
IENABLE REG 8 CLOCK
'ENABLE REG 1 CLOCK

IENABLE REG 2 CLOCK

'ENABLE REG 3 CLOCK

ISAVE FIXUP COND IN FIXUP REG R
ISELECT FIXUP COND
IENABLE CLOCK OF FIXUP REG R

IFIXUP TO ADR IFF COND (OR REG)
ISELECT START ADR

IADR 1S FIXUP ADDRESS

ISELECT FIXUP CONDITION
{CONDITIONALLY TEST FIXUP REGS
IENABLE FIXUP

T0UTPUT SW FLOATING RESULT

TADJUST EXPONENT BY SHIFT CNT
IMERGE EXPONENT INTO SHIFT OUT
ITEST MANTISSA CONDITIONS
!SAVE FLOAT FIX CONDITION
IFIXUP ON REGS OR FLOAT FIX
IRESULTY IFF NO FIX

'POSTNORMALIZE A:B, USE FIX R
IPOSTNORMALTZE BY FZC

ICHECK BAD ONES COUNT
'RECOMPUTE GUARD BITS

'SET UP FOR EXPONENT ADJUST
'HOLD CO IN CO REGISTER

'REG ADR FOR A OP FROM IBOX
IREG ADR FOR B OP FROM I1BOX
'REG ADR FOR C OP FROM 1BOX
'REG ADR FOR D OP FROM IBOX

ILAST INSTR MUST WRITE IW

334 E-Sequencer Micro-Code Macros

%JSR (COND, ADR) [
BR DEST=BRANCH,
BR SEL="COND",
BR ADR="ADR",
. JSR=1]

%LOAD BYTE PTRI
BYTE PTR PE=LOAD]

%L.0AD COL
SW CO PE= LDAD]

%LOAD COND(
COND STATUS SEL=COND CODES
COND STATUS PE=LOAD]

%LOAD CONTROL {
EBOX CONTROL PE=LOAD]

%LOAD REPT(CNT) {
REPT CTR MODE=LOAD,
MC REPT="CNT"]

%NERGE(LEN)[
MERGE LEN= "LEN“
AUTO MERGE]

AMULTIPLY L
TRANS A SEL=FLOAT,
MULT EN=1,

FA(B CO,S,A+B),FA SEL(NULT)'

Q MODE=RIGHT 4]

%0PS (W,A,B) [
OP W ADR="W",
OP A ADR="A",
OP B ADR="B"]

%RESULT (COND) [
RESULT. SEL="COND"]

%RET (COND)
BR DEST=RETURN,
BR SEL="COND")

AlO

1JSR TO ADR IFF COND

ISET UP BRANCH ADDRESS MUX
ISET UP BRANCH COND MUX
VINPUT TO BRANCH ADDRESS MUX
IENABLE JSR

ISET UP EXTERNAL BYTE PTR REG

'LOAD CO
IENABLE LOADING OF CO REGISTER

ILOAD CONDITION STATUS
ISELECT COND STATUS INPUT
IENABLE LOADING OF COND STATUS

{LOAD CONTROL BITS FROM 1BOX

IREPT. LOAD REPITION COUNTERS

IMERGE OPERAND INTO R
104 OR HW MERGE
IENABLE AUTO MERGE

ISET UP MULTIPLY CYCLE

I TRANSLATE MULTIPLICAND

IENABLE MULTIPLY CONTROL OF CSA
ISET UP FA TO MULTIPLY

ISHIFT MULTIPLIER RIGHT 4

ISET UP THREE REGISTER ADRS
IWRITE REGISTER ADDRESS
IREAD REGISTER ADDRESS A
IREAD REGISTER ADDRESS B

ISET RESULT ON THREE CONDS:
TALWAYS, NEVER, OR IFF NO FIXUP

IRET IFF COND

- 1SET UP BRANCH ADDRESS MUX

ISET UP BRANCH COND MUX

AlO ' . E-Sequencer Micro-Code Macros 335

%RSHIFT (
MM SEL=SHIFT)

%SHIFT(A,B,C) [
SHIFT A IN SEL="A",
SHIFT B IN SEL="B",
SHIFT CTL="C"]

%START QW HWI

TAKE,

SAVE CONTROL,

FIXUP INIT]
%TAKE Al
' USE I A OP=1]

%TAKE B
USE I B OP=1)

%TAKE (
TAKE A,
TAKE B

%TEST BOUNDS (CONSTANT) {
- MC=-"CONSTANT",
FA(MC,B,A+B)]

L TRANS (LEN) [
TRANS A SEL="LEN",
TRANS B SEL="LEN")

%XA(C) [
XBOX ALU CTL="C"]

%XBOX SEL (A,B,S) [
XBOX A SEL="A",
XBOX B SEL="B",
XBOX SCNT SEL="SCNT"}

IR OUTPUT GETS SHIFT
ISELECT SHIFT ON MUX MERGER

ISHIFT AB CONTROLLED BY C
ISELECT SHIFTER A LEG
'SELECT SHIFTER B LEG
ISELECT SHIFTER CONTROL

!START QW OR HW INSTRUCTION
ITAKE A AND B OPS FROM 1BOX
!SAVE CONTROL SIGNALS FROM IBOX
TALWAYS INITIALIZE FIXUP REG
!TAKE A OPERAND FROM IBOX

ITAKE B OPERAND FROM 1BOX

ITAKE A AND B OPS FROM 1BOX

ISET UP TEST FOR MC>X20
ISET MC=-CONSTANT
'ADD MC TO B YIELDING B-MC

!TRANSLATE A AND B

ICONTROL EXPONENT BOX ALU

ISELECT EXPONENT BOX ALU INPUTS
ISELECT A INPUT

ISELECT B INPUT

ISELECT SCNT INPUT

336

All. E-Sequencer Micro-Code

'ADD Q, ADD H

§ skt ok kKKK KAOK KKK AR KA KA KK AKAKNAAAKIKKAAK A AAAAARAAARA KA AR A AR KKK K AR

ADD Q:

oPsi4,2,7),
START QW Hu;

0PS (5,'TA, 1B), TRANS (QW),
TAKE A
FA(A,B,A+B),LOAD COND,
FIXUP SAVE (SW v,08);

0PS(IUW,5,4),

MERGE (QW) ,

DONE (ALWAYS) , RESULT (ALWAYS),

PIXUP (REG,NEVER, INT OVFL);

ISET UP TO WRITE DESTINATION INTO R4
ISTART QU HW INSTRUCTION

I TRANSLATE OPERANDS

- ITAKE DESTINATION INTO 4

'ADD AND SAVE STATUS
ISAVE FIXUP CONDITION

IMERGE RESULT INTO DESTINATION
'ALWAYS DELIVER A RESULT
IFIXUP IFF OVFL

1 3RSk KK AR AAARKARKAKAAKAK K AR KRR AARAAAKAKAAKRAAKKARAAAAAARAOR KRR AR KR KKK

ADD H:

0Ps(4,2,2),
START QW HW;

OPS (5, 1A, 1B), TRANS (HW),
TAKE A,
FA(A,B,A+B),LOAD COND
FIX SAVE (HU V,0);

OPS(I1UW,5,4),
NERGE(HN)
DONE(ALNAYS) RESULT (ALWAYS),

F IXUP (REG, NEVER INT OVFL) s

ISET UP TO WRITE DESTINATION INTO R4
'START QW HW INSTRUCTION

ITRANSLATE OPERANDS
'TAKE DESTINATION INTO 4
'ADD AND SAVE STATUS
ISAVE FIXUP CONDITION

IMERGE RESULT INTO DESTINATION
'ALWAYS DELIVER A RESULT
'FIXUP IFF REG OVFL

All - E-Sequencer Micro-Code - 337

'ADD S, ADD D

1 ook KKK AR AR AR AR KKK KAK K AARARARAKI AR AR AR AN KKK FARAAOR N AR AR A AORNOK KK

ADD S: :
OPS (1M, IA, 1B}, TAKE, ITAKE BOTH OPERANDS FROM 1BOX
FA(A,B.A+B),LOAD COND, {ADD AND SAVE STATUS

'DONE (ALWAYS) , RESULT (ALWAYS) , IALWAYS DELIVER A RESULT

FIXUP (SW V, INT OVFL); 'FIXUP IFF SW V
.!***
ADD D:

%MSA [IA) S IMOST SIGNIFICANT WORD OF OPERAND A

%MsB (1B : , IMOST SIGNIFICANT WORD OF OPERAND B

%LSA [IC) : ILEAST SIGNIFICANT WORD OF OPERAND A.
%sB [1D] ILEAST SIGNIFICANT WORD OF OPERAND B

OPS (LSA,MSA,MSBY , TAKE; ' ITAKE MOST SIGNIFICANT PARTS FIRST

OPS (6, LSA, LSB) , TAKE, ITAKE LEAST SIGNIFICANT PARTS
FA(A,B,A+B),LOAD CO, IADD AND SAVE CARRY

RESULT (ALWAYS) ; IDELIVER LEAST SIGNIFICANT RESULT

OPS (1W, MSA, MSB) ,

FA(A,B.A+B),FA SEL (SAVED CO), 1ADD

LOAD' COND, - ISAVE STATUS

DONE (ALWAYS) , RESULT (ALUAYS) , IALWAYS DELIVER A RESULT

FIXUP(SW V,INT OVFL); IFIXUP IFF SW V

338

'INC @, INC H

E-Sequencer Micro-Code o | All

!****************************f**

INC Q:

0PS(Z,2,2),
START QI HI;

OPS (4, 1B, Z), TRANS (QW) ,
FA(A,Z,A+1),LOAD COND,
FIXUP SAVE (SW V,8);

OPS(IW,4,1A),
MERGE (QW) ,

DONE (ALWAYS) ,RESULT (ALUWAYS),

FIXUP (REG,NEVER, INT OVFL);

ISTART QW HW INSTRUCTION

! TRANSLATE OPERANDS
'INCREMENT AND SAVE STATUS
!SAVE FIXP CONDITION

'MERGE QW INTO OUTPUT
'ALWAYS DELIVER THIS RESULT
IFIXUP IFF OVFL

!***

INC H:

opPs(z,2,71,
START QW HU;

OPS (4, 18,2}, TRANS (HW) ,
FA(A,Z,A+1) .LOAD COND,
FIXUP ‘SAVE (SW V,8);

OPS(IUW,4,1A),
MERGE (HW) ,

DONE (ALWAYS) ,RESULT (ALWAYS),

FIXUP (REG, NEVER, INT OVFL);

.!START QW HW INSTRUCTION

I TRANSLATE OPERANDS
I INCREMENT AND SAVE STATUS
ISAVE FIXUP CONDITION

'MERGE HW INTO OUTPUT
TALWAYS DELIVER THIS RESULT
IFIXUP IFF OVFL :

All

'INC S, INC D

E-Sequencer Micro-Code 339

!***

INC S:

OPS (IW,1A,2) , TAKE A,
FA(A,Z,A+1) ,LOAD COND,

DONE (ALWAYS) , RESULT (ALUWAYS),
FIXUP(NO REG,SW V,INT OVFL);

'USE ONLY OPERAND A
FINCREMENT AND SAVE STATUS
TALWAYS DELIVER THIS RESULT
IFIXUP IFF SW V

!**#************************

INC D:
%MS {18} -
%LS [5])

OPS(LS,Z,MS), TAKE B;

ops(z,Z,LS), TAKE B,
FA(Z,B,A+B+1),L0AD CO,
RESULT (ALUWAYS) 5

OPS(IW,NS,7),

FA(A,B,A+8) ,FA SEL (SAVED CO),
LOAD COND,

DONE (ALWAYS) ,RESULT (ALUWAYS) ,
FIXUP{NO REG,SW V, INT OVFL);

IMOST SIGNIFICANT WORD
'LEAST SIGNIFICANT WORD

ITAKE MS AS THE B OPERAND

!TAKE LS AS THE B OPERAND
'INCREMENT LOW HALF AND SAVE CARRY
'ALWAYS DELIVER THIS RESULT

'USE THE SECOND HALF OF THE OPERAND
'ADD THE SAVED CARRY OUT

ISAVE THE STATUS

'ALWAYS DELIVER THIS RESULT

IFIXUP IFF OVFL

. 340 ' E-Sequencer Micro-Code All

FADD FR S:
%SMALL [4)
%1A+1B (5] -
¥POST (6]

%PRE ' (9)

%BOC (13

YFFIX [2]
OPS(Z, 1A, 1B), TAKE,

XBOX SEL (A EXP,B EXP,HOLD),XA(A-B),
EXP SUM PE=LOAD,
FIXUP INIT;

0OPS (SMALL, TA, I1B), TRANS (FLOAT,FLDAT),
PRE EN=1,SHIFT(Z,B,36-EXP SUM),R«SHIFT,
FIXUP SAVE(PRE V,PRE),

G SEL=BZC,

BR(EXP N,FADD FR S A SMALL);

OPS (1A+1B, IA,SMALL) , TRANS (FLOAT,FLOAT),
FA(A,B,A+B) ,FA SEL (GUARD),

G SEL=ADD,

XA(A) ,EXP SUM PE=LOAD;

FADD FR S JOIN:

OPS (POST, 1A+1B,2), A
FLOAT SW POST(A,Z.BOC);

FLOAT SW OUT (POST,FFIX,FADD FR S FIX);
FADD FR S A SMALL: '

0OPS (1A+18B,SMALL, 1B) , TRANS (FLOAT,FLOAT),
FA(A,B,A+B),

XA (B) ,EXP SUM PE=LOAD,

G SEL=ADD,

BR (ALWAYS,FADD FR S JOIN);

ISMALLER OF 1A AND IB
PINITIAL RESULT 1A+1B
IRESULT OF POSTNORMALIZATION

IPRE OVERFLOW FIXUP REGISTER
IBAD ONES COUNT FIXUP REGISTER -
IFLOAT FIX FIXUP REGISTER

* ISUBTRACT EXPONENTS

ISAVE EXPONENT DIFFERENCE
VINITIALIZE FIXUP REGISTERS

'PRENORMAL I ZE SMALLER

ICHECK PRENORM OVERFLOW
ISAVE GUARD BITS
IBR ON EXP DIFFERENCE SIGN

'I1B IS SMALLER

'ADD TIA AND 1B WITH GUARD BITS
ISAVE THE RECOMPUTED GUARD BITS
ISAVE THE LARGER EXPONENT

ICOME HERE IN BOTH CASES

IPOSTNORMAL 1ZE
I0UTPUT FLOATING RESULT POST

'TA IS SMALLER

IADD IA AND IB

ISAVE THE LARGER EXPONENT
'RECOMPUTE GUARD BITS
'RETURN TO FINISH FADD

All E-Sequencer Micro-Code 341

FADD SR S:

%SMALL - (4]
%1A+1B [S]
%POST (6]
%ROUND (7]

%PRE (8]
%B0C 1]
*FFIX (2]
%RND V(3]

0PS(Z, 1A, 1B), TAKE,

XBOX SEL (A EXP,B EXP,HOLD),XA(A-B),
EXP SUM PE=LOAD,

FIXUP INIT;

OPS (SMALL, IA, 18), TRANS (FLOAT,FLOAT),
PRE EN=1, SHIFT(Z B, 36-EXP SUH) R«SHIFT

" FIXUP SAVE (PRE v, PRE)

G SEL=BZC,
BR(EXP N,FADD SR S A SMALL);

'DPS(IA+IB,IA,SHALL);TRANS(FLOAT.FLDAT),
FA(A,B,A+B) ,FA SEL (GUARD),

G SEL=ADD,

‘XA (A) ,EXP SUM PE=LOAD;

FADD SR S JOIN:

0PS (POST, 1A+1B,2), -
FLOAT SW POST(A,Z,BOC);

0PS (ROUND, POST, Z) ,

FA(A,B,A+B) ,FA SEL (RND) ,RND MODE=STABLE,

FIXUP SAVE (MANT V,RND V);
FLOAT SW OUT (ROUND,FFIX,FADD SR S FIX);
FADD SR S A SMALL:

OPS (1A+18,SMALL, IB), TRANS (FLOAT,FLOAT),
FA({A,B, A+B)

XA(B) EXP SUM PE-LOAD,

G SEL=ADD,

BR(ALWAYS,FADD FR S JOIN)3

ISMALLER OF IA AND IB
PINITIAL RESULT TA+IB
IRESULT OF POSTNORMALIZATION
IRESULT OF ROUNDING

'PRE OVERFLOW FIXUP REGISTER
IBAD ONES COUNT FIXUP REGISTER
IFLOAT FIX FIXUP REGISTER
'ROUNDING OVERFLOW FIXUP REG

ISUBTRACT EXPONENTS
ISAVE EXPONENT DIFFERENCE
PINITIALIZE FIXUP REGISTERS

IPRENORMAL I ZE SMALLER
ICHECK PRENORM OVERFLOW
ISAVE GUARD BITS

IBR ON EXP DIFFERENCE SICGN

118 IS SMALLER

'ADD IA AND IB WITH GUARD BITS
ISAVE THE RECOMPUTED GUARD BITS
ISAVE THE LARGER EXPONENT

ICOME HERE IN BOTH CASES

IPOSTNORMAL 1 ZE

IPERFORM STABLE ROUNDING

ICHECK ROUNDING OVERFLOW
IOUTPUT FLOATING RESULT ROUND

'TA 1S SMALLER

'ADD IA AND 1B

ISAVE THE LARGER EXPONENT -
IRECOMPUTE GUARD BITS
'RETURN TO FINISH FADD

342 E-Sequencer Micro-Code | All

FMULT FR S:
%MPCND [1A]
%MPYR [1B]
%PROD (4]
%POST (5]
- %BOC (2]
“FFIX 1]

OPS (Z, MPCND, MPYR) , TAKE
SHIFT(A,Z,Z) ,ReSHIFT,

Q MODE=LODAD,

XBOX SEL (A EXP,B EXP,HOLD),XA(A+B),

| . EXP SUM PE=LOAD;

0PS (PROD, MPCND, 2) ,

XBOX SEL (EXP SUM,SCNT/MC,MC),MC EXP=128,
XA (A-B) ,EXP SUM PE=LOAD,

LOAD REPT(5),

MULTIPLY;

FMULT FR S L1:

OPS (PROD, MPCND, PROD) ,
MULTIPLY, .

BR NZ DEC(MC,FMULT FR S L1);

0PS (POST, PROD, Z),
FLOAT SW POST(A,Q,BOC)

FLOAT SW OUT(POST,FFIX,FMULT FR S FIX);

tMULTIPL1CAND

'MULTIPLIER

'PRODUCT REGISTER

'PRODUCT AFTER POSTNORMALIZE

IBAD ONES COUNT FIXUP REGISTER
IFLOAT FIX FIXUP REGISTER

'PUT MULTIPLIER ON SHIFTER OUT
ILOAD Q REGISTER WITH MULTIPLIER
!ADD EXPONENTS

'CORRECT EXPONENT SUM

ISET UP COUNTER
f00 ONE MULTIPLY CYCLE HERE

'D0 ANOTHER MULTIPLY CYCLE
IREPEAT MULTIPLY CYCLES

IPOSTNORMALIZE A:Q
10UTPUT FLOATING RESULT POST

All . E-Sequencer Micro-Code ' 343

FMULT SR S:

YMPCND [1A)
ZMPYR [IB]

%PROD -[4)
%POST (5]
%ROUND (6]
%B0OC (0]
%FFIX (1}
%RND V. (3]

OPS (Z, MPCND, MPYR) , TAKE
SHIFT(A,Z,Z) ,ReSHIFT,

Q MODE=LOAD,

XBOX SEL (A EXP,B EXP,HOLD),XA(A+B),
EXP SUM PE=LOAD;

OPS (PROD,MPCND, Z) ,

XBOX SEL (EXP SUM,SCNT/MC,MC),MC EXP=128,
XA (A-B) ,EXP SUM PE=LOAD, -

LOAD REPT(S),

MULTIPLY;

FMULT FR S L1:

0PS (PROO, MPCND, PROD) ,
MULTIPLY, .

BR NZ DEC(MC,FMULT SR S L1);

OPS (POST, PROD, 7)), '
FLOAT SW POST(A,Q,BOC);

OPS (ROUND, POST,Z),
FA(A,B,A+B),FA SEL (RND) ,RND MODE=STABLE,
FIXUP SAVE (MANT V,RND V)

FLOAT SW OUT (ROUND,FFIX,FMULT SR S FIX);

IMULTIPLICAND

IMULTIPLIER

'PROBUCT REGISTER

IPRODUCT AFTER POSTNORMALIZE
IRESULT OF ROUNDING

IBAD ONES COUNT FIXUP REGISTER

IFLOAT FIX FIXUP REGISTER
JROUNDING OVERFLOW FIXUP REG

IPUT MULTIPLIER ON SHIFTER OUT
'LOAD Q REGISTER WITH MULTIPLIER
1ADD EXPONENTS

ICORRECT EXPONENT SUM

ISET UP COUNTER :
D0 ONE MULTIPLY CYCLE HERE

!D0 ANOTHER MULTIPLY CYCLE
'REPEAT MULTIPLY CYCLES
'POSTNORMALIZE A:Q
'PERFORM STABLE ROUNDING

fCHECK ROUNDING OVERFLOUW :
I0UTPUT FLOATING RESULT ROUND

344 E-Sequencer Micro-Code All

1INC (SKIP,JUMP), DEC (SKIP,JUMP)

!***

i

INC (SKIP, JUMP) :

0PS(4,1A,Z),TAKE,
LOAD CONTROL,
FA{A,B,A+l),
RESULT (ALWAYS) ;

oPS (W, 4,1B),
_FA(A,B,A-B),
LOAD COND,

TEST WRONG BRANCH=EN,

DONE (SW V L);
'BR(ALWAYS, INT OVFL);

ITAKE OP1 AS A OPERAND
'SAVE BRANCH CONDITION ETC
' INCREMENT OP1

TALWAYS DELIVER OP141

ICOMPARE OP1+1 WITH 0P2

ITEST WRONG BRANCH
'DONE [IFF NOT OVFL

INOT DONE SO GO TO OVERFLOW-

1 AR KAAAKKKAAKAARAARKAKAAKKAAKAAAAAAKAAAAAAKAAKAAAARAAAAAKAAAAAAKKAKKIKKAIAAKKAKAAKAAA A AN KK

DEC (SKIP,JUMP) s

0oPS (4, 1A,72), TAKE,
LOAD CONTROL,
FA(A,B,A-1),
RESULT (ALWAYS) ;

OPS(IW,4,1B),
FA(A,B,A-B),

LOAD COND,

TEST WRONG BRANCH=EN,
DONE (SW V L)

BR (ALWAYS, INT OVFL);

!TAKE OP1 AS A OPERAND
ISAVE BRANCH CONDITION ETC
IDECREMENT OP1

- 'ALWAYS DELIVER 0OP1-1

!COMPARE OP1-1 WITH OP2

ITEST WRONG BRANCH
'DONE IFF NOT OVFL

INOT DONE SO GO TO OVERFLOW

All E-Sequencer Micro-Code 345

ISKIP Q, SKIP H, SKIP S, SKIP D

1 ook RRRR AR AK KRR IKAKIORKAORAARA KA AKAKARAK AR A KA KA AR AR KA KK KK KK

SKIP Q:
0PS€Z,2,2), | IRECEIVE QW OPERANDS

START QU HM; |

OPS(1U, 1A, 1B), TRANS (QW) , | | I TRANSLATE GW OPERANDS
FA(A,B.A-B), | | COMPARE

TEST WRONG BRANCH=EN, [TEST WRONG BRANCH

DONE (ALWAYS) ; IND RESULT

1 3R ORAR AR KA KRR AIKIAORA AR AN A AR AR AR KA KA KKK K KKK e K ol K K AR KKK KK
SKIP H:

0PS(Z,2,2), | IRECEIVE HU OPERANDS

START QW HIl; - ' |

OPS (1W, 1A, 1B) , TRANS (HW) , ' | TRANSLATE HW OPERANDS
FA(A,B.A-B), | COMPARE

TEST WRONG BRANCH=EN, ITEST WRONG BRANCH

DONE (ALUAYS) ; - IND RESULT

!***

SKIP S:
OPS (IW, 1A, 1B), TAKE, ITAKE BOTH OPERANDS
LOAD CONTROL, 'LOAD BRANCH CONDITION ETC.
FA(A,B,A-B), !COMPARE
TEST WRONG BRANCH=EN, ITEST WRONG BRANCH
~ DONE (ALWAYS) ; L INO RESULT

!***

‘SKIP D:
AMSA UIA) IMOST SIGNIFICANT WORD OF OPERAND A
%MSB [1B] IMOST SIGNIFICANT WORD OF OPERAND B
9LSA LIC] ILEAST SIGNIFICANT WORD OF OPERAND A
%S8O} ILEAST SIGNIFICANT WORD OF OPERAND B
OPS (LSA, MSA, MSB) , TAKE, ' ITAKE MOST SIGNIFICANT PARTS FIRST
LOAD CONTROL ; . 1LOAD BRANCH CONDITION ETC.

OPS (6, LSA,LSB) , TAKE, ITAKE LEAST SIGNIFICANT PARTS
FA(A,B,A-B) ,LOAD CO; ISUBTRACT AND SAVE CARRY

OPS (11, MSA, MSB)., |

FA(A,B.A-B) ,FA SEL (SAVED CO), ISUBTRACT

TEST WAONG BRANCH=EN, ITEST WRONG BRANCH

DONE (ALWAYS) 3 'ALWAYS DELIVER A RESULT

346 E-Sequencer Micro-Code All

IAND SKIP (Z,NZ) @, AND SKIP (Z,NZ) H, AND SKIP (Z,NZ) S

1 3Kk KKK KK IAORAHARAAK AR KK KA KKK AR IR AR AR KR KK KKKk KKk koK KKK AR KKK KKK AR KKK -

AND SKIP (Z,N2) Q:

oPs(z,2,7), IRECEIVE QW OPERANDS
START QW HUW;

OPS (1W, 1A, 1B), TRANS (QW) , | TRANSLATE QW OPERANDS
FA(A,B,A AND B), 'AND THE OPERANDS
LOAD COND,

TEST WRONG BRANCH=EN, ' !TEST WRONG BRANCH
DONE (ALWAYS) ; . INO RESULT

!***

AND SKIP (Z,NZ) H:

0PS(2,2,2), 'RECEIVE HW OPERANDS
START QU Hil; ,

. OPS(IW, 1A, I1B), TRANS (HW) , I TRANSLATE HW OPERANDS
FA(A,B,A AND B), IAND THE OPERANDS
LOAD COND, |
TEST WRONG BRANCH=EN, ITEST WRONG BRANCH
DONE (ALWAYS) 3 INO RESULT

1 3gokokoRARACK A AR ARAKKAK AR A AR A A A AR AAK KKK KK KKK A KNCK K ARAKAK AR K

"AND SKIP (Z,NZ) S:

OPS(IUW, 1A, 1B), TAKE, ' !TAKE BOTH OPERANDS

LOAD CONTROL, !LOAD BRANCH CONDITION ETC.
FA(A,B,A AND B}, IAND THE OPERANDS

LOAD COND,

TEST WRONG BRANCHZ=EN, ITEST WRONG BRANCH

* DONE (ALWAYS) ; : IND RESULT

&

All

AND SKIP Z D:

%MSA (1A}
%MSB {18}
%LSA (1C)
%58 (1D}

OPS (LSA,MSA, MSB) , TAKE,
LOAD CONTROL,
FA(A,B,A AND B);

0PS (6, LSA,LSB) , TAKE,
FA(A,B,A AND B),
BR(SW Z,AND SKIP Z D L1);

OPS(IW,Z,2),
FA(A,B,MINUS ONE),
LOAD COND,

TEST WRONG BRANCH=EN,
DONE (ALWAYS) ;

AND SKIP Z D L1:

0Ps (iW,s6,2),
FA(A,B,A),

LOAD COND,

TEST WRONG BRANCH=EN,
DONE (ALWAYS) ;

E-Sequencer Micro-Code 347

IMOST SIGNIFICANT WORD OF OPERAND A
IMOST SIGNIFICANT WORD OF OPERAND B
ILEAST SIGNIFICANT WORD OF OPERAND A
ILEAST SIGNIFICANT WORD OF OPERAND B

ITAKE MOST SIGNIFICANT PARTS FIRST
!LOAD BRANCH CONDITION ETC.
FAND THE MOST SIGNIFICANT PARTS NOW

ITAKE LEAST SIGNIFICANT PARTS
IAND THE LEAST SIGNIFICANT PARTS
IBRANCH IF (MSA AND MSB) =0

IPUT A'NON-ZERO OUTPUT ON THE FA

ITEST WRONG BRANCH
INO RESULT

. 1(MSA AND MSB) =8

'READ BACK (LSA AND LSB)
IPUT OUT (LSA AND LSB) ON THE FA

!TEST WRONG BRANCH

INO RESULT

348

AND SKIP NZ D:

%MSA (1A}
%M5B {IB]
%LSA (1]
%LSB {101

OPS (LSA,MSA,MSB) , TAKE,

LOAD CONTROL,
FA(A,B,A AND B);

0OPS (6,1L5A,LSB), TAKE,
FA(A,B,A AND B),

BR(SW Z L,AND SKIP NZ D L1};

oPS(IW,Z,72),
FA(A,B,ZERO),

LOAD COND,

TEST WRONG BRANCH=EN,
DONE (ALWAYS) ;

AND SKIP NZ D Li:

oPS(1U,6,2),
FA(A,B,A),

LOAD COND,

TEST WRONG BRANCH=EN,
 DONE (ALWAYS) ;

E-Sequencer Micro-Code All

IMOST SIGNIFICANT WORD OF OPERAND A
IMOST SIGNIFICANT WORD OF OPERAND B
ILEAST SIGNIFICANT WORD OF OPERAND A
ILEAST SIGNIFICANT WORD OF OPERAND B

ITAKE MOST SIGNIFICANT PARTS FIRST
ILOAD BRANCH CONDITION ETC,

IAND THE MOST SIGNIFICANT PARTS NOW
'TAKE LEAST SIGNIFICANT PARTS

IAND THE LEAST SIGNIFICANT PARTS
!BRANCH IF (MSA AND MSB) =0

'PUT A ZERO OUTPUT ON THE FA

ITEST WRONG BRANCH
INO RESULT

I (MSA AND MSB) =0

IREAD BACK (LSA AND LSB)
'PUT OUT (LSA AND LSB) ON THE FA

'TEST WRONG BRANCH
INO RESULT

All E-Sequencer Micro-Code 349

ISHIFT LEFT L Q, SHIFT LEFT L'H

!*****ﬁ***

SHIFT LEFT L Q:

%D [1A]
%SCNT [1B)
ops(z,z,7),

START QW HuW;

OPS (4,D,SCNT) , TRANS (GW)
SHIFT(A,Z,B QU3),

TEST BOUNDS(9),FIX SAVE(SW IN BOUNDS, @) ;

OPS(iW,4,2),

MERGE (QUW),

DONE (ALWAYS) ,RESULT (NO FIX),

F IXUP (REG, NEVER,SW LOGIC ZERO);

IDATA
ISHIFT COUNT

ISHIFT DATA
ISAVE 9>SCNT28 IN FIX REG @

IMERGE QW INTO R
'DELIVER RESULT IFF NO FIX
IFIXUP IFF SCNT NOT IN BOUNDS

F ok skokeoRK KA KA AR IARNA A AR AR AR AAACIARAK KKK A AR A AKNA A KA KKK

SHIFT LEFT L H:

% (1A
%SCNT [1B)

ops(z,Z,7),
- START QW HW;

OPS (4,0, SCNT) , TRANS (HW)
SHIFT(A,Z,B QW3),

TEST BOUNDS(18),F1X SAVE (SW IN BOUNDS, @)

0oPS(1W,4,2),

MERGE (HW) ,

DONE (ALWAYS) ,RESULT(NO FIX),

F IXUP (REG,NEVER, SW LOGIC ZERO);

IDATA
ISHIFT COUNT

ISHIFT DATA :
ISAVE 9>SCNT20 IN FIX REG ©

IMERGE HW INTO R
'DELIVER RESULT IFF NO FIX
'FIXUP IFF SCNT NOT IN BOUNDS

350 E-Sequencer Micro-Code ‘ All

ISHIFT LEFT L S, SHIFT LEFTL D
1 oRAARRARKAKIRIKKIIARRARAAAAARAKAAKAAAKRKIARAAAAAAIAAAAAAAAKAAAAAKAKKHIAAAKKAAAKAAAKKAK

SHIFT LEFT L St

%D (1A} IDATA

%SCNT [IB] ISHIFT COUNT

OPS (IW,D, SCNT) , TAKE,

SHIFT(A,Z,B QU3), ISHIFT DATA

DONE (ALWAYS) ,RESULT(NO FIX), IDELIVER RESULT IFF NO FIX
TEST BOUNDS (36), ITEST 36>SCNT20

FIXUP (SW IN BOUNDS,SW LOGIC ZERO); _ ’ IFIXUP IFF SCNT NOT IN BOUNDS

1 3R ARARAR KA K AKAACKARIAKAAAIAKAAAIKARNAKIARAKKIAKIAKKAKHAAAKKAKIAAAKHKAAAAAKIKAKAAK

SHIFT LEFT L D:

%08 (IA) IDATA WORD 8 (MOST SIGNIFICANT)
%SCNT {1B] ’ ISHIFT COUNT »
%01 {1C] ' IDATA WORD 1 (LEAST SIGNIFICANT)
%D0S {51 100 SHIFTED '
0PS(D1,Z,1B), TAKE, IPREPARE TO ACCEPT IC

TEST BOUNDS(72), ITEST 72>SCNT20

LOAD BYTE PTR; . ISAVE SCNT FOR LATER

OPS (D@S,D1,72), TAKE A, 1ACCEPT IC

SHIFT(D1,Z,B QU3), ICREATE LOW ORDER WORD .

BR(SW IN BOUNDS L,DW LOGIC ZERO), IGIVE ZERO IF SCNT NOT IN BOUND
RESULT (NO BRANCHJ; . 'RESULT IFF SCNT IN BOUNDS
opPs(IW,D8,D1), ~ ISCNT IS IN BOUNDS
SHIFT(D8,D1,C28 B QU3), ICREATE HIGH ORDER WORD

DONE (ALWAYS) , RESULT (ALWAYS) ; IALWAYS DELIVER A RESULT

&

All E-Sequencer Micro-Code 351

'LBYTE, DBYTE

1 sicakok kORI AIAKACK AR AR AAKAK A ANKARKIAAKARAAAK KRR KA AR KA A oK R KA KRR KK

LBYTE:
%BUW [1A)
" %BP (el

OPS (4, BW, BP) , TAKE,
"SHIFT(A,Z,B BYTE POS),ReSHIFT;

0PS(I1UW,4,8P),
SHIFT(Z A B BYTE LEN) ,ReSHIFT,
DUNE(ALNAYS) RESULT(ALNAYS)'

IBYTE WORD
!BYTE LEN, BYTE POS

ILEFT JUSTIFY BYTE

ISHIFT BYTE INTO RESULT WORD
FALWAYS DELIVER RESULT

!***

DBYTE:
%D, (1A]
%BP (g1

%*BUW (4]

OPS (6, DU, B8P}, TAKE,
SHIFT(A A,B BYTE POS) ,ReSHIFT,
LOAD BYTE PTR;

oPS (5,6,8P),
SHIFT(A,A,B BYTE LEN) ,ReSHIFT;

0PS(7,4,5), TAKE A,
SHIFT(A,B,36-C28 BYTE LEN),ReSHIFT;

oPSs(1W,7,72),
SHIFT (A,A,36-C20 BYTE POS),ReSHIFT,
DONE (ALWAYS) , RESULT (ALWAYS)

IDESTINATION WORD = T:E:B
IBYTE LEN, BYTE POS
IBYTE WORD = C:D:X

{X=E, DO=T, C=B

ISET UP TO ACCEPT D

IR6 « E:B:T

'LOAD BYTE PTR REG FOR LATER
IRS « B:T:E

R4 « BYTE WORD C:D:X

IR7 « X:B:T

IRESULT « T:X:B
IALWAYS DELIVER A RESULT

OPS(NBP Z,BP}, .
- SHIFT(Z,2,2), FA(Z B,B),MERGE QHS-I,
RESULT(ALNAYS)

352 - E-Sequencer Micro-Code | All

LBYTE INC:
%BU [1A]
%BP [18]
%4BL (4
%BA IS
%LR (6]
UNBP (7]
%T1 18]
%12 91
%13 [16)
YNBA [11]

OPS (LR, BW,BP), TAKE,
SHIFT(A,Z,B BYTE POS),ReSHIFT;

OPS(LR,LR,BP),
SHIFT(Z,A,B BYTE LEN),R<SHIFT,
RESULT (ALWAYS) 3

oPS(BL,Z,BP),
SHIFT(Z,B,MC),MC SHIFT=27,
FA(Z,B,Z) ,MERGE QUW3=1;

0oPS(T1,BL,BP), TAKE B,
CSA(Ax2,Z,B) ,FA(B CO,S,A+B);

oPS (72,2, T1),
FA(MC,B, A-B) ,MC=36;

OPS (NBP,BL,BP),
FA(A,B,A4B),
BR(SW N,BYTE POS OVFL);

OPS (NBP,NBP,BP) ,

SHIFT(A,Z,Z),FA(Z,B,B) ,MERGE QW3-=1,

RESULT (ALWAYS) 5
OPS(1U,BA,Z),

FA(A,B,A),’

DONE (ALWAYS) ,RESULT (ALWAYS)

BYTE POS OVFL:

+

0OPS(T3,BA,Z),

SHIFT(A,A,MC) ,MC SHIFT=6,R<SHIFT;

OPS(NBA,Z,T3),
FA(MC,B,A+B) ,MC=256;

OPS (1W,NBA,NBA),

SHIFT(A 8,MC), MC SHIFT= 36, ReSHIFT

DONE (SW' V' L), RESULT (ALWAYS) ;
oPS(1W,Z,2), '

IDATA WORD

IBYTE LEN, BYTE POS

IBYTE LEN

IBYTE POINTER ADDRESS
ILBYTE RESULT

INEW BYTE POINTER
1POS+2%LEN

136-P0S+2xLEN

'BA ROTATED LEFT 6

INEW BYTE POINTER ADDRESS

IBEGIN LBYTE INTO LR
ILEFT JUSTIFY BYTE -

ISHIFT BYTE INTO LR
'ALWAYS DELIVER A RESULT .

tALIGN BYTE LENGTH AS QU3
ICLEAR QUO, GW1, QW2

"1BA « BYTE POINTER ADDRESS

IT1 « POS+2xLEN
IT2 « 36-POS+2%LEN

INBP « POS+LEN
'BR IF POS+2+LEN>36

IMERGE POS+LEN INTD BP QW3
IAND DELIVER NEW BYTE PTR

IPASS BACK ADDRESS UNCHANGED
'BYTE POSITION OVERFLOW

IMERGE 8 INTO BYTE POS QW
IDELIVER NEW BYTE PTR

'ROTATE BA TO LEFT JUSTIFY
'ADD 4 TO BA

'ROTATE NEW ADDRESS

'PASS ADDRESS. DONE IFF NOT OVFL

All E-Sequencer Micro-Code 353

FA(MC,B,A) ,MC=BYTE PTR TRAP, : '
DONE (ALWAYS) , TRAP; ‘ IADDRESS OVERFLOW. TRAP.

- 354 E-Sequencer Micro-Code ' All
MSBIT:

%D (1Al 1DATA

%BP {18) IBYTE LEN, BYTE POS

OPS (4,0,BP) , TAKE,
SHIFT(A,Z, BYTE POS),ReSHIFT;

oPs (5,4,7),
FA(A,B.A+8),
MM SEL=12C;

oPS (1UW,5,2),
FA(A,B,A+l),
DONE (SW N L) ,RESULT (DONE) ;

oPS(IW,Z,2),
FA(Z,B, A)
DONE(ALNAYS) RESULT (ALWAYS) ;

ILEFT JUSTIFY BYTE IN DATA WORD

ISET UP TO TEST BYTE SIGN
-IRS « 1ZC

I INCREMENT 12C

IF BYTE28 THEN DELIVER 1ZC+1
IBYTE<@

IDELIVER © RESULT

A12. Low-Level Macro Drawings

355

. _ _
4

g
S2zY7383082
CEEENEENER ‘.m

IB X 1K RAM 2i10-1

(IKRAM)

440>

Y

cuiei Eegs
L./
43> >2¢j’
] 18101
6y
AR
4> 22>
1 19101 ;
c 2 s‘a>
g l P
10101
[33
3 >3
ace> e
| 10101
<¢4>
725 *
446> 248>
]csna: k>
3
e 263
] 10101
c 5(§)
L‘/
A< 27>
| 10101 S
L_7/
48y 2e@
—} 10101 ™
AL
49> ¢
1010
]c 1 B>

X

10 Bit 10101

(MACIO01)

W

£

7B X 1K . 78 X 1K
RAN : RAN
b 2e-r o , ener

A B
A__WE CS a_uE Cs
DIco: 6>
) B
10111
1
8 X IK 38 X 1K
RAN
" 21101 T b 2110-% P
c o .
A _WE _CS o gw__cs
Dlc2: 9>
Q0 :9 ° 817
o101
€2

10B X 1K EBOX Control Store Cell (ESCEL2)

J¢9:6)
78 X 1K 78 X 1K 78 X 1K 78 X 1K
RAN RAN RAN R
h 2ne-1 o h 2ne1 o 21101 o 2118-1 o
A [] € F
f__WE_CS a_w cs | H__uE_CS A_wE_CS |
1c0: 62
L (\ [T AN ; N\
10118 \ 10118 \
yam L
[4
J<7:92
38 x K 38 %X IK 38 X 1K 38 X IK
RAN RAN rAN AN
y aner o k 2nmer o 2111 21181 o
c] G [
a 5 cs_ | A__ME_CS A_\E CS (2] g cs
12:9>

AP: 9 ® 81T
2101
c

16 BIT
8101

)

CS<2> L
10103
¢ 3
C8<1> L
19101
° < 6
CS<@> L

10B X 4K RAM 2110-1 (10BX4K)

10101
[

"

_f\

AO:3

Beo: 3

Aca: 7y

Bea: 7>

fca:13>

BBy

Ch

16 Bit CMP (I6CMP)

A<O: >

BO; 3>
Rea: 7>
(=, 4
[4
1 (3 @y
Bca:2 :
e 1 M\ <
) X 1e1e98 2
’ cL
6
8e8:13) A 4 BIT '
o
>, .
2 [& e —
B<B:1))> e
i
fle:16) A 4 BIT
[~, o
. C
3 o_—
Be12:16>
Lﬂcy
ov
EnN L

16 Bit CMPEN (16CMPE)

/9

T<o: 5>

B X 1K
RAN
148:6> 2110-1
L]
A _E CS
68 X 1K
RAN
3¢6:11> 21101 V<613
1
A _WE_C8
cs L ; N\
18310 \
y4
A
[T ; \
10110 \
L
[}
| X K
RAN
I1<312=14> 213101
2
3B X IK
1<16:37> 21ne-r T6:12
3
A__w cs |
8<8:9> ° BIT
0101
€e
*

18B X 1K RAM 2110-1 (18BXIK)

[\

68 X 1K
RAN
1¢0:6> 2110-1 T J¢9:5>
[
G ME_CS
6B X 1K
RAM
16312 281 J<b: 11>
]
A_ME CS_ |
ME L ; N\
110\
V4
)
R : B X IK
RAN
Ic12:14> 21101 ¥ Je12:14>
2
AW €S)
38 X K
RAR
J<16:12> 21101 ¥ T<16:17>
3
58—
8:0:3: 10 BIT

se10

&

18B X 1K RAM 2110-1 W/O CS (18BIKW)

78 X 1K
RAn
1¢0:65 2111 T<®:6>
[
[g cs
7B % 1K
RAN
12337 21e-1 | J<2:13
}
: €8
€ L ; \—
10110 \
>
f
M L (. N\
10110 \
L
[
38 X 1K
Rt
Ic14:16) 21101 <1436
2
a g cs |
D X 1K
RAN
31<17:19> 2o T<32:19
3
a_ e c8 |
RP 9> e BIT
o101
€c
»

20B X IK RAM 2110-1

(20BX IK)

FS

208 X 1K
RANM
1<0:19 2101
f
A__sE_Cs
€SP b i
208 X 1K
RAN
b 2101
2
a__uE CS
cs<@r o
208 X 1K
RAN
. 21103
1
A__WE_CS
-
€S> ¢
208 X 1K
RAR
ane-1 T1<8:19>
.
A __WE €S
fe@: 9
HE L
€5¢0> 1

20B X 4K RAM 2110-1 (20BX4K)

<@ ;34> M <@ 817 0:6>

JZ2C IN<@: 39> I COUNTER
z
(-4

[~ ¥'N

35 Bit Top Zeroes Counter (TZC)

3

£<@: 3>

o
Rea:7y
Sc28;312

2(4:7>

fe24:27>

fB:11>

236>

pe24:22> 8<16:19> BB:11>
P.Ga .. 7. 61 Gwe P, 62 P. 63 7.Go P.G1 T 7. 63
- CARRY LOOK RHEAD 18179 CRRRY LOOK RHERAD 18179
N [T ¢ e a
A 8
(X (X
F. GO P. G1 Gz P62 - F.G3 F.GO P61 . Gre P62 F.G3
CRARRY LODK AHERD 18179 CARRY LOOK RHERD 18179
N e PN S - -
c [
f.6 PG

36 Bit ALU 10181 (36ALU)

L9g

L= 00 enie

1<34)> o Jcty
1<T3> Ry J<2>
< RNt J<3»
J<31> o J<qd
pis 1] RN J<B)
1329 R T
128 & 137y
<22 RNny 148>
1260 RN J<9>
(263 R 110>
1<24> R 1<)
<23 RMN Ji2>
22> /RN 11
<21 R < >
LT 2) RN 3<16>
<19 - 216>
198 RNEL J<17>
1¢17> 18>
1<36r RNt 1<19)
< > [y 2l < >
<14 R J<2y>
<13 R _J<32>
12> RNt 1<23>
<3112 <243
<19 RN J¢<26)
<9 R 1<p6)
B 01:13 RN J 27>
<7 RNN_1<28>
<6 BNn_] <29>
<Gy Lx_24
<4y . ® 131>
<3 132>
«@> RNy 1< 33>
<3 1 <345
(113 RN _1<36)
" RNN_1¢36)
H B 137>
H RN 138>

RNAL_1¢ 39>

36 Bit Bottom Zeroes Counter (BZC) k

48 81T
ZEROES
I COUNTER
z
(=3
o L
L3

<.

18 X 1K
RAN
p 522 21101 Te®»
.
p_w _cs |
18 X 1K
AN
1<y 21ne-1 J<y>
1
6w cs |
18 X 1K
RAN
122 2110-1 Yep>
2
8_ue CS
T
fe0;:9> | Q
s |
.
gs L

-

3B X IK RAM 21101

(3BX 1K)

- 4 Bit CMP (4CMP)

£

A28:31)

Ac24:27>

8¢24:22>

$<36:39>

8¢28:31>

B<12:16>

X F.G1 TnZz P, 62 7.63 P.Go 7. 61 Gz P62 .03
CARRY LOOK RHERD 18179 CARRY LOOK AHERD 10179
N e a CcNea
a [
PG PG
H
F.Go P, G1 Ched F,G2 P, 63 ¥, G - 7,61 e P, G2 P. 63
CARRY LOOK AHEAD 18179 CARRY LOOK AHERD 10179
N CNea CNe 4

[~ [
P.G P,

40 Bit ALU 10181 (40ALU)

e

8 BIT FRST
PRIO ENCODER

10165 . .
[\

[]] []

o ’ 1

o
=1
-

[
oW
R
-t

C<3:8>

»

8 BIT FAST
PRIO ENCODER
10166
RNY
1¢8:16> o . ¢

N

\

8 BIT FRST

8 B1T FAST .
10 EMCODER
10166 aNY .
D .))
3 Q

$24:31>

o«

CeO: 2>

8 BIT FAST
PRIO ENCOOER
10166

e LI

- 40 Bit Zeroes Counter (ZC) -

18 X 1K

peili Zm-l T <0
°
A _uE_CS
1B X 1K
132 zmﬂ . 112
3
f__uE CS
18 X 1K
p L5 21101 T T
2 -
A\ Cs
1B % 1K
pL9::3 a??.'-, ¥ T
3
a_uE ? |
1B X 1K
< zm-l ¥ Jca>
-
A _w _Cs |
1B X 1K
<> 2??:—1 . J62
3
A_WE CS
08<0:9>
HE L
[«

6B X 1K RAM 2110-1

gL

(6BXIK)

18 X 1K

7B X 1K RAM 2110-1

22,
1< L 21101 1 T<8>
[
a_wE cs |
1B X 1K
RAN
141> b 2110-1 J<1>
1
! _WE_CS
1B X 1K
RAN
) L¥2] 21ne-1 o -t
2
a_we C8 |
18 X 1K
RAN
I 21101 h K3
3
R__WE_CS
18 %X 1K
: RAN
Jea> 21101 o Tea>
-
L o 1 cs
18 X 1K
RAN
I<62 211e-1 o F
[
A _WE CS
1B X 1K
RAN
16> 210-1 o T<o>
6
R _WE _CS
0<D: 9
WE L
Cs L

/A

o>

[T

De2»

193166

pe3r

pea>

Q<8
[0 S U, .3 .

DeBY

Q1>
Q1 1

D>

<Py
Qb 13

D<Z>

8 Bit Fast Prio Encoder (FPRIO)

e

18 X 1K
RAN
1 L 21181 1@
'8
®
A_uwE Cs |
1B X IK -
RrArt
I<1> L 2110-1 T3y -
3
La w cs i
1 93
18 X 1K
RAN
12> - 21101 I
2
Lo w c5 |
18 X 1K
RAY
13 2110-1 b I
3
La_w cs |
L ;—_Ej
18 X 1K
RAM
PR3- 1] 21181 o T<a>
-+
a__WE _CS
1B X 1K
RAM -
Ice> " 21301 o <6
6
A _ME_CS
1B X 1K
RAN
I1<oy 2110-1 o Teod
6
A_WE_CS
18 X 1K
RAM
I 21101 <2
T T
?
WE_CS
B<B:9>
Y
!
HE L |
cs+

8B X 1K RAM 2110-1

(8BX 1K)

AN

o7
10162 Q6
50> c pes
o4
£e12 B a3
o @
S22 [a1
oo

N3

E® L ? T

Lt

M10162 (M 10162)

Leg

